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Abstract

Probabilistic models are dominant in data management, but
are often described in a combination of natural and mathe-
matical language, and algorithms need to be engineered for an
individual application. Probabilistic programming languages
have received considerable attention recently as they con-
tribute formal languages that enable re-use and clarity in the
problem specification. Our interest in this paper is the de-
velopment of a programming language, called ALLEGRO,
that is in service of the high-level control of an autonomous
system, such a mobile robot. The language’s mathematical
foundations rests of Bayesian conditioning, and its programs
are interpreted over a sophisticated logical theory of actions
supplemented with user-defined axioms. While many exist-
ing probabilistic programming languages can easily be shown
to capture stochastic transitions, we argue that an action-
centric probabilistic programming has many valuable prop-
erties. As a modeling language, ALLEGRO can be seen as a
basis for relating high-level control specifications, including
plans with loops, on the one hand, and high-level probabilis-
tic models, such as relational graphical models, on the other.

1 Introduction
Probabilistic models are dominant in data management, but
are often described in a combination of natural and math-
ematical language, and algorithms need to be engineered
for an individual application. Probabilistic programming
languages have received considerable attention recently as
they contribute formal languages that enable re-use and
clarity in the problem specification (Raedt, Kimmig, and
Toivonen 2007; Milch et al. 2005; Goodman et al. 2008;
Pfeffer 2001). The underlying technical idea in probabilistic
programming languages is to extend (traditional) program-
ming languages with primitives for random choices to en-
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able the modeling of, and learning with, structured proba-
bility distributions. The end goal, then, is to support generic
inference techniques that can circumvent the need to engi-
neer specialized algorithms.

Our interest in this paper is the development of a program-
ming paradigm that is in service of the high-level control of
an autonomous system, such a mobile robot. Clearly, such
a paradigm would need to take into account the probabilis-
tic beliefs of the system, and moreover, when operating in
an inherently dynamic world, the system would also need to
know the actions (e.g., pick up a block, clear the table) at its
disposal, the effects of executing such actions, and the ways
in which it can learn more about the world by making ob-
servations of one form or another. Note, for example, when
these actions are of a nondeterministic nature, that is, when
defined over a stochastic transition model, there is an im-
plicit notion of random choice, except that on executing the
action, the system is not aware about the exact nature of the
outcome and has to reason about all of them. In this sense,
what we are after is much like a probabilistic program, ex-
cept that beliefs need to be tracked in an online fashion: as
the program executes, actions are carried out in the world
leading to new beliefs.

In this paper, we report on the development of such a
language allegro, also referred to a belief-based program
(in the knowledge representation literature). The language’s
mathematical foundations rests of Bayesian conditioning,
and its programs are interpreted over a sophisticated logi-
cal theory of actions supplemented with user-defined axioms
(and constraints).

Of course, existing probabilistic programming languages
can easily be shown to capture stochastic transitions (Good-
man et al. 2008; Nitti, Laet, and Raedt 2013), via a planning-
as-inference implementation. So, why is there a need for an
alternative proposal? Here are a few noteworthy benefits:

• Actions are first-class citizens in our approach. This
means that:

– program execution corresponds to the agent doing
things in the world, and it can branch on observations
made about the world like a conditional plan; and

– complex actions can be further defined by means of
constructs such as recursion and sequence allowing for
action repetition and modularity.



• A long-standing concern is ensure that AI systems, such
as robots, behave reliably. To date, many powerful algo-
rithms have been studied for the correctness of temporal
behaviours, such as safety, liveness and fairness (Baier
and Katoen 2008), which can be lifted to action-centric
programming languages (Claßen et al. 2014).

• Actions often depend on complicated features of the
world: for example, a pick up action assumes the robot’s
arms are free, and a sensor’s accuracy may depend on
the temperature. A rich logical theory of action makes
the modeling of such features straightforward by allow-
ing logical connectives.

• Most significantly, allegro is based on a general proba-
bilistic logic (Bacchus, Halpern, and Levesque 1999) that
allows discrete and continuous random variables (Belle
and Levesque 2013), and in that sense, rich representa-
tions of structured probability distributions, such as sta-
tistical relational learning languages, can be further incor-
porated.

The origins of allegro can be traced to two influential
proposals: the action-centric high-level programming lan-
guage golog (Levesque et al. 1997), and knowledge-based
programming (Fagin et al. 1995; Reiter 2001a), where pro-
gram execution is conditioned on beliefs. However, these
accounts did not address probabilistic beliefs and stochas-
tic transitions, which allegro does. More recently, we de-
veloped a system called prego (Belle and Levesque 2014),
which is simply an inference engine, and not a programming
formalism (Belle and Levesque 2015). In this sense, allegro
can be seen as the realization of algol-like features in prego.

In terms of organization, we introduce allegro, before
turning to related work and conclusions. We refer readers
to (Belle and Levesque 2015) for discussions on allegro’s
mathematical foundations and empirical behavior.

2 The allegro System
The allegro system1 is a programming language with a sim-
ple LISP-like syntax.2 In this section, we discuss domain ax-
iomatizations, introduce the grammar of allegro programs,
and discuss how allegro is used.

Domain Axiomatization
When modeling a domain, the user provides a basic action
theory (or BAT) (Reiter 2001a) to describe the domain in
terms of fluents, actions and sensors, possibly characterized
by discrete and continuous distributions. As a small exam-
ple, Figure 2 shows a BAT for the domain illustrated in Fig-
ure 1, which can be read as follows:3

1Available at vaishakbelle.com
2allegro is realized in the racket dialect of the scheme family

(racket-lang.org). We use racket arithmetic freely, such as the
max function, as well as any other function that can be defined in
racket, like GAUSSIAN. However, the technical development does
not hinge on any feature unique to that language.

3For ease of exposition, we limit discussions in the follow-
ing ways. First, we omit any mention of action preconditions
here. Second, fluents are assumed to be real-valued, and more-

h

Figure 1: Robot moving towards a wall.

(define-fluents h)

(define-ini-p-expr ‘(UNIFORM h 2 12))

(define-ss-exprs h
(nfwd x y) ‘(max 0 (- h ,y))

(define-alts
(nfwd x y) (lambda (z) ‘(nfwd ,x ,z)))

(define-l-exprs
(nfwd x y) ‘(GAUSSIAN ,y ,x 1.0)
(sonar z) ‘(GAUSSIAN ,z h 4.0))

Figure 2: A BAT for the simple robot domain.

1. The domain has a single fluent h, the distance to the wall,
whose initial value is taken by the agent to be drawn from
a (continuous) uniform distribution on [2, 12].

2. The successor state axiom for h says that it is affected
only by the nfwd action. The first argument of nfwd is
the amount the agent intends to move, and the second is
the amount that is actually moved (which determines how
much the value of h is to be reduced).

3. The alt axiom is used to say that if an action of the form
(nfwd 2 2.79) occurs, the agent will only know that
(nfwd 2 z) happened for some value of z.

4. The likelihood axiom for nfwd says that the actual amount
moved by nfwd will be expected by the agent to be
centered (wrt a normal distribution) around the intended
amount with a standard deviation of 1.0.

5. The likelihood axiom for sonar says that sonar readings
are noisy but will be expected to be centered around the
true value of h with a standard deviation of 4.0.

The idea here is that starting with some initial beliefs, exe-
cuting (sonar 5) does not guarantee that the agent is ac-
tually 5 units from the wall, although it should serve to in-
crease the robot’s confidence in that fact. Analogously, per-
forming a noisy move with an intended argument 2 means
that the robot may end up moving (say) 2.79 units. Never-
theless, its degree of belief that it is closer to the wall should
increase.

over, only basic features of the language are explained in the pa-
per. In general (Belle and Levesque 2014), fluent values can range
over any set, BATs are not limited to any specific family of dis-
crete/continuous distributions, and the language supports notions
not usually seen in standard probabilistic formalisms, such as con-
textual likelihood axioms. (For example, if the floor is slippery,
then the noise of a move action may be amplified.) All of these are
fully realized in allegro.



Belief-based Programs
The BAT specification describes the noise in actions and
sensors wrt the actual outcomes and values observed. But
a robot executing a program need not know these outcomes
and values. For this reason, the primitive programs of al-
legro are actions that suppress these parameters. So for the
actions (nfwd x y) and (sonar z) appearing in a BAT,
the primitive programs will be (nfwd x) and (sonar).

The basic allegro language uses five program constructs:
prim primitive programs;
(begin prog1 . . . progn) sequence;
(if form prog1 prog2) conditional;
(let ((var1 term1) . . . (varn termn)) prog) assignments;
(until form prog) until loop.

Here form stands for formulas built from this grammar:

form ::= ( ◦ term1 term2) | ( • form1 form2) | (not form)

where ◦ ∈ {<, >,=} and • ∈ {and, or} . Here term stands for
terms built from the following grammar:

term ::= (exp term) | number | fluent | var | (� term1 term2) |
(if form term1 term2)

where � is any arithmetic operator (e.g., + and -). The pri-
mary “epistemic” operator in allegro is exp: (exp term)
refers to the expected value of term. (Reasoning about the
expected value about a fluent allows the robot to monitor
how it changes with sensing, for example.) The degree of
belief in a formula form can then be defined in terms of exp
as follows:

(bel form) � (exp (if form 1.0 0.0))

For our purposes, it is convenient to also introduce (conf
term number), standing for the degree of confidence in the
value of a term, as an abbreviation for:

(bel (> number (abs (- term (exp term)))))

For example, given a fluent f that is normally distributed,
(conf f .1) is higher when the curve is narrower.

Usage
The allegro system allows programs to be used in three
ways: in online mode − the system displays each primitive
program as it occurs, and prompts the user to enter the sens-
ing results; in network mode − the system is connected to
a robot over TCP, the system sends primitive programs to
the robot for execution, and the robot sends back the sensing
data it obtains; and finally, in offline mode − the system gen-
erates ersatz sensing data according to the given error model.
In all cases, the system begins in an initial belief state, and
updates this belief state as it runs the program.

As a simple illustration, imagine the robot from Figure 2
would like to get within 2 and 6 units from the wall. It might
proceed as follows: sharpen belief about current position (by
sensing), (intend to) move by an appropriate amount, adjust
beliefs for the noise of the move, and repeat these steps until
the goal is achieved. This intuition is given as a program in
Figure 3: here, conf is used to first become confident about
h and then exp is used to determine the distance for getting

(until (> (bel (and (>= h 2) (<= h 6))) .8)
(until (> (conf h .4) .8) (sonar))
(let ((diff (- (exp h) 4)))
(nfwd diff)))

Figure 3: A program to get between 2 and 6 units from the wall.

midway between 2 and 6 units. (An arbitrary threshold of
.8 is used everywhere wrt the robot’s beliefs.) For an online
execution of this program prog in allegro, we would do:

> (online-do prog)
Execute action: (sonar)
Enter sensed value: 4.1
Enter sensed value: 3.4
Execute action: (nfwd 1.0)
Enter sensed value: 3.9
Enter sensed value: 4.2
Execute action: (nfwd 0.0)

We see the robot first applying the sonar sensor, for which
the user reports a value of 4.1. After updating its beliefs
for this observation, the robot is not as confident as required
by prog, and so, a second sensing action is executed for
which 3.4 is read. Then the robot attempts a (noisy) move,
but its confidence degrades as a result. So these steps are
repeated once more, after which the program terminates. On
termination, the required property can be tested in allegro
using:

> (bel (and (>= h 2) (<= h 6)))
0.8094620133032484

Semantics
The logical foundation of allegro is based on the situation
calculus (Reiter 2001a). The interpretation of belief opera-
tors, in particular, is based on an extension of the situation
calculus for degrees of belief and noisy sensors (Belle and
Levesque 2013). The interpretation of programs is an exten-
sion to the online version of golog (Sardina et al. 2004). For
these details, and a formal result relating a sampling-based
interpreter for allegro, on the one hand, and situation cal-
culus basic action theories, on the other, we refer interested
readers to (Belle and Levesque 2015).

3 Related Work and Discussions
We first relate allegro to high-level agent programming pro-
posals, and then to planning proposals.

The allegro system is a programming model based on
the situation calculus, and so is a new addition to the golog
family of high-level programming languages (Levesque et
al. 1997; Sardina et al. 2004). In particular, it follows in
the tradition of knowledge-based golog with sensing in an
online context (Reiter 2001b; Claßen and Lakemeyer 2006;
Fan et al. 2012), but generalizes this in the sense of handling
degrees of belief and probabilistic noise in the action model.

The golog family has been previously extended for proba-
bilistic nondeterminism, but there are significant differences.
For example, in the pGolog model (Grosskreutz and Lake-
meyer 2003), the outcome of a nondeterminism action is



immediately observable after doing the action, and contin-
uous distributions are not handled. This is also true of the
notable dtgolog approach (Boutilier et al. 2000) and its vari-
ants (Ferrein and Lakemeyer 2008). In this sense, the alle-
gro model is more general where the agent cannot observe
the outcomes and sensors are noisy. Moreover, these propos-
als do not represent beliefs explicitly, and so do not include
a query language for reasoning about nested belief expres-
sions.

Outside of the situation calculus, an alternative to golog,
called flux (Thielscher 2004; 2005), has been extended
for knowledge-based programming with noisy effectors
in (Thielscher 2001; Martin and Thielscher 2009); contin-
uous probability distributions and nested belief terms are,
however, not handled. The concept of knowledge-based pro-
gramming was first introduced in (Fagin et al. 1995). These
have been extended for Spohn-style [1988] ordinal func-
tions in (Laverny and Lang 2005). For discussions on how
high-level programming relates to standard agent program-
ming (Shoham 1993), see (Sardina and Lespérance 2010).

Programs, broadly speaking, generalize sequential and
tree-like plan structures, but can also be used to limit plan
search (Baier, Fritz, and McIlraith 2007); we refer inter-
ested readers to (Lakemeyer and Levesque 2007) for discus-
sions. There are, of course, many planning approaches in on-
line contexts, including knowledge-based planning (Petrick
and Bacchus 2004; Van Ditmarsch, Herzig, and De Lima
2007), decision-theoretic proposals (Puterman 1994; Kael-
bling, Littman, and Cassandra 1998), corresponding rela-
tional abstractions (Sanner and Kersting 2010; Zamani et
al. 2012), and belief-based planning (Kaelbling and Lozano-
Pérez 2013). See (Lang and Zanuttini 2012) on viewing
knowledge-based programs as plans.

In the same vein, let us reiterate that the BAT syntax
is based on an inference system called prego (Belle and
Levesque 2014), and from the viewpoint of a representa-
tion language, see that work for discussions on its expres-
siveness relative to other formalisms, such as probabilis-
tic planning languages (Sanner 2011), action formalisms
(Van Benthem, Gerbrandy, and Kooi 2009; Thielscher 2001;
Iocchi et al. 2009), and related efforts on combining logic
and probability (Bacchus 1990; Richardson and Domingos
2006). Notably, its support for continuous distributions and
arbitrary successor state axioms makes it a tractable but ex-
pressive language.

In the context of probabilistic models, we remark that
there are other realizations of program-based probabilistic
behavior, such as probabilistic programming (Milch et al.
2005; Goodman et al. 2008). These are formal languages
that provide program constructs for probabilistic inference.
While they are expressive enough to capture dynamical
probabilistic models (Nitti, Laet, and Raedt 2013), they be-
long to a tradition that is different from the golog and flux
families. For example, atomic programs in golog are actions
taken from a basic action theory whereas in (Milch et al.
2005), atomic constructs can be seen as random variables in
a Bayesian Network. In other words, in golog, the empha-
sis is on high-level control, whereas in many probabilistic
programming proposals, the emphasis is on inference. So, a

direct comparison is difficult; whether these traditions can
be combined is an open question.

4 Conclusions
This paper proposes an online account of belief-based pro-
grams that handles discrete and continuous probability dis-
tributions. It is intended as an alternative to golog in stochas-
tic dynamical domains where sensors and effectors are noisy.

Beginning with the expressive logical language of the
situation calculus, we presented and implemented allegro
using a rich BAT syntax. This fragment is interesting be-
cause it embodies the desirable features of logic-based ac-
tion languages, such as non-trivial successor state and like-
lihood axioms. The latter property together with the rich
query mechanism and program syntax in allegro suggests
that it could be seen as a basis for relating high-level agent
programming (Lakemeyer and Levesque 2007) and proba-
bilistic robotics (Thrun, Burgard, and Fox 2005) in a general
way.

There are many interesting avenues for future work, such
as relating belief-based programs to decision-theoretic high-
level programming (Boutilier et al. 2000), particle filters
(Thrun, Burgard, and Fox 2005), and probabilistic program-
ming (Goodman et al. 2008), among others. Integrating the
allegro system with software frameworks such as ros,4 as
shown in (Ferrein et al. 2015), is also planned for the future.
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