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Abstract

Reasoning about degrees of belief in uncertain dynamic worlds is fundamental to many applications, such as robotics
and planning, where actions modify state properties and sensors provide measurements, both of which are prone to
noise. With the exception of limited cases such as Gaussian processes over linear phenomena, belief state evolution
can be complex and hard to reason with in a general way, especially when the agent has to deal with categorical
assertions, incomplete information such as disjunctive knowledge, as well as probabilistic knowledge. Among the
many approaches for reasoning about degrees of belief in the presence of noisy sensing and acting, the logical account
proposed by Bacchus, Halpern, and Levesque is perhaps the most expressive, allowing for such belief states to be
expressed naturally as constraints. While that proposal is powerful, the task of how to plan effectively is not addressed.
In fact, at a more fundamental level, the task of projection, that of reasoning about beliefs effectively after acting and
sensing, is left entirely open.

To aid planning algorithms, we study the projection problem in this work. In the reasoning about actions literature,
there are two main solutions to projection: regression and progression. Both of these have proven enormously useful
for the design of logical agents, essentially paving the way for cognitive robotics. Roughly, regression reduces a query
about the future to a query about the initial state. Progression, on the other hand, changes the initial state according
to the effects of each action and then checks whether the formula holds in the updated state. In this work, we show
how both of these generalize in the presence of degrees of belief, noisy acting and sensing. Our results allow for both
discrete and continuous probability distributions to be used in the specification of beliefs and dynamics.

Keywords: Knowledge representation, Reasoning about action, Reasoning about knowledge, Reasoning about
uncertainty, Cognitive robotics

1. Introduction

Reasoning about degrees of belief in uncertain dynamic worlds is fundamental to many applications, such as
robotics and planning, where actions modify state properties and sensors provide measurements, both of which are
prone to noise. However, there seem to be two disparate paradigms to address this concern, both of which have their
limitations. At one extreme, there are logical formalisms, such as the situation calculus [51, 58], which allows us
to express strict uncertainty, and exploits regularities in the effects actions have on propositions to describe physical
laws compactly. Probabilistic sensor fusion, however, has received less attention here. (Notable exceptions will
be discussed in the penultimate section.) At the other extreme, revising beliefs after noisy observations over rich
error profiles is effortlessly addressed using probabilistic techniques such as Kalman filtering and Dynamic Bayesian
Networks [20, 21]. However, in these frameworks, a complete specification of the dependencies between variables is
taken as given, making it difficult to deal with other forms of incomplete knowledge as well as complex actions that
shift dependencies between variables in nontrivial ways.

IA preliminary version of this work has appeared in [7, 8]. In particular, the results on regression were first reported in [7], but that account was
limited to noise-free actions only. The results on progression were first reported in [8].
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Figure 1: Robot moving towards a wall.

An influential but nevertheless simple proposal by Bacchus, Halpern and Levesque [2], BHL henceforth, was
among the first to merge these broad areas in a general way. Their specification is widely applicable because it is
not constrained to particular structural assumptions. In a nutshell, they extend the situation calculus language with
a provision for specifying the degrees of belief in formulas in the initial state, closely fashioned after intuitions on
incorporating probability in modal logics [34, 26]. This then allows incomplete and partial specifications, which
might be compatible with one or very many initial distributions and sets of independence assumptions, with beliefs
following at a corresponding level of specificity. Moreover, together with a rich action theory, the model not only
exhibits Bayesian conditioning [55] (which, then, captures special cases such as Kalman filtering [69]), but also
allows flexibility in the ways dependencies and distributions may change over actions.

While that proposal is powerful, the task of how to plan effectively is not addressed. In essence, this would
correspond to a flavor of epistemic planning [3] where the state of knowledge, actions and sensing are mixtures of
logical and probabilistic assertions. In fact, at a more fundamental level, the task of projection, that of reasoning
about beliefs effectively after acting and sensing, is left entirely open. More precisely, while changing degrees of
belief do indeed emerge as logical entailments of the given action theory, no procedure is given for computing these
entailments. On closer examination, in fact, this is a two-part question:

(i) How do we effectively reason about beliefs in a particular state?

(ii) How do we effectively reason about belief state evolution and belief change?

In the simplest case, part (i) puts aside acting and sensing, and considers reasoning about the initial state only,
which is then the classical problem of (first-order) probabilistic inference. We do not attempt to do a full survey here,
but this has received a lot of attention [56, 32, 18, 11].

This work is about part (ii). Addressing this concern would not only aid planning algorithms, but also has a critical
bearing on the assumptions made about the domain for tractability purposes. For example, if the initial state supports
a decomposed representation of the distribution, can we expect the same after actions? In the exception of very limited
cases such as Kalman filtering that harness the conjugate property of Gaussian processes, the situation is discouraging.
In fact, even in the slightly more general case of Dynamic Bayesian Networks, which are in essence atomic propo-
sitions, if one were to assume that state variables are independent at time 0, they can become fully correlated after a
few steps [19, 17, 33]. Dealing with complex actions, incomplete specifications and mixed representations, therefore,
is significantly more involved.

In the reasoning about actions literature, where the focus is on qualitative (non-probabilistic) knowledge, there
are two main solutions to projection: regression and progression [58]. Both of these have proven enormously useful
for the design of logical agents, essentially paving the way for cognitive robotics [42]. Roughly, regression reduces
a query about the future to a query about the initial state. Progression, on the other hand, changes the initial state
according to the effects of each action and then checks whether the formula holds in the updated state. In this work,
we show how both of these generalize in the presence of degrees of belief, noisy acting and sensing. Our results allow
for both discrete and continuous probability distributions to be used in the specification of beliefs and dynamics, that
leverage a recent extension of the BHL framework to mixed discrete-continuous domains [10].

To elaborate on the regression result, we show that it is general, not requiring (but allowing) structural constraints
about the domain, nor imposing (but allowing) limitations to the family of actions. Regression derives a mathematical
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formula, using term and formula substitution only, that relates belief after a sequence of actions and observations,
even when they are noisy, to beliefs about the initial state. That is, among other things, if the initial state supports
efficient factorizations, regression will maintain this advantage no matter how actions affect the dependencies between
state variables over time. Going further, the formalism will work seamlessly with discrete probability distributions,
probability densities, and perhaps most significantly, with difficult combinations of the two.

To see a simple example of what goal regression does, imagine a robot facing a wall and at a certain distance h
to it, as in Figure 1. The robot might initially believe h to be drawn from a uniform distribution on [2, 12]. Assume
the robot moves away by 2 units and is now interested in the belief about h ≤ 5. Regression would tell the robot that
this is equivalent to its initial beliefs about h ≤ 3 which here would lead to a value of .1. To see a nontrivial example,
imagine now the robot is also equipped with a sonar unit aimed at the wall, that adds Gaussian noise with mean µ and
variance σ2. After moving away by 2 units, if the sonar were now to provide a reading of 8, then regression would
derive that belief about h ≤ 5 is equivalent to

1
γ

∫ 3

2
.1 × N(6 − x; µ, σ2) dx.

where γ is the normalization factor. Essentially, the posterior belief about h ≤ 5 is reformulated as the product of the
prior belief about h ≤ 3 and the likelihood of h ≤ 3 given an observation of 6. (That is, observing 8 after moving away
by 2 units is related here to observing 6 initially.)

We believe the broader implications of this result are two-fold. On the one hand, as we show later, simple cases of
belief state evolution, as applicable to conjugate distributions for example, are special cases of regression’s backward
chaining procedure. Thus, regression could serve as a formal basis to study probabilistic belief change wrt limited
forms of actions. On the other hand, our contribution can be viewed as a methodology for combining actions with
recent advances in probabilistic inference, because reasoning about actions reduces to reasoning about the initial state.

To elaborate on the progression result, it has been argued that for long-lived agents like robots, continually up-
dating the current view of the state of the world, is perhaps better suited. Lin and Reiter [47] show that progression
is always second-order definable, and in general, it appears that second-order logic is unavoidable [76]. However,
Lin and Reiter also identify some first-order definable cases by syntactically restricting situation calculus basic action
theories, and since then, a number of other special cases have been studied [48].

While Lin and Reiter intended their work to be used on robots, one criticism leveled at their work, and indeed at
much of the work in cognitive robotics, is that the theory is far removed from the kind of continuous uncertainty and
noise seen in typical robotic applications. What exactly filtering mechanisms (such as Kalman filters) have to do with
Lin and Reiter’s progression has gone unanswered, although it has long been suspected that the two are related.

Our result remedies this situation. However, as we discuss later, progression in stochastic domains is complicated
by the fact that actions can transform a continuous distribution to a mixed one. To obtain a closed-form result, we
introduce a property of basic action theories called invertibility, closely related to invertible functions in real analysis
[70]. We identify syntactic restrictions on basic action theories that guarantee invertibility. For our central result, we
show a first-order progression of degrees of belief against noise in effectors and sensors for action theories that are
invertible.

We structure this article as follows. In the preliminaries section, we cover the situation calculus, recap BHL and
go over the essentials of its continuous extension. (This is taken with slight modifications from [10].) We then present
regression for discrete domains, followed by regression for general domains. We then turn to a few special cases, such
as conjugate distributions. Next, we turn to invertible theories, and discuss progression. Finally, we conclude after
discussing related work.

2. Background

We work with the languageL of the situation calculus [51], as developed in [58]. It is a special-purpose knowledge
representation formalism for reasoning about dynamical systems. The formalism is best understood by arranging the
world in terms of three kinds of things: situations, actions and objects. Situations represent “snapshots,” and can be
viewed as possible histories. A set of initial situations correspond to the ways the world can be prior to the occurrence
of actions. The result of doing an action, then, leads to a successor (non-initial) situation. Naturally, dynamic worlds
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change the properties of objects, which are captured using predicates and functions whose last argument is always a
situation, called fluents.

Logical Language
Formally, the language L of the situation calculus is a many-sorted dialect of predicate calculus, with sorts for

actions, situations and objects (for everything else). (We do not review standard predicate logic here; see, for example,
[25, 65]. We further assume familiarity with the notions of models, structures, satisfaction and entailment.) In full
length, let L include:

• logical connectives ¬,∀,∧,=, with other connectives such as ⊃ understood for their usual abbreviations;

• an infinite supply of variables of each sort;

• an infinite supply of constant symbols of the sort object;

• for each k ≥ 1, object function symbols g1, g2, . . . of type (action ∪ object)k → object;

• for each k ≥ 0, action function symbols A1, A2, . . . of type (action ∪ object)k → action;

• a special situation function symbol do: action × situation→ situation;

• a special predicate symbol Poss: action × situation;1

• for each k ≥ 0, fluent function symbols f1, f2, . . . of type (action ∪ object)k × situation→ object;

• a special constant S0 to represent the actual initial situation.

To reiterate, apart from some syntactic particulars, the logical basis for the situation calculus is the regular (many-
sorted) predicate calculus.2 So, terms and well-formed formulas are defined inductively, as usual, respecting sorts.
See, for example, [58] for an exposition.

Dynamic worlds are enabled by performing actions, and in the language, this is realized using the do operator.
That is, the result of doing an action a at situation s is the situation do(a, s). Functional fluents, which take situations as
arguments, may then have different values at different situations, thereby capturing changing properties of the world.
As noted, the constant S0 is assumed to give the actual initial state of the domain, but the agent may consider others
possible that capture the beliefs and ignorance of the agent. In general, we say a situation is an initial one when it is a
situation without a predecessor:

Init(s) .= ¬∃a, s′. s = do(a, s′).

The picture that emerges is that situations can be structured as a set of trees, each rooted at an initial situation and
whose edges are actions. We use ι to range over such initial situations only, and let δ denote sequences of action terms
or variables, and freely use this with do, that is, if δ = [a1, . . . , an] then do(δ, s) stands for do(an, do(. . . , do(a1, s) . . .)).

Domains are modeled in the situation calculus as axioms. A set of L-sentences specify the actions available,
what they depend on, and the ways they affect the world. Specifically, these axioms are given in the form of a basic
action theory [58], reviewed shortly, that appeal to the formulation of successor state axioms, which incorporates a
monotonic solution to the frame problem.

We follow three notational conventions. We often suppress the situation argument in a formula φ, or use a dis-
tinguished variable now. Either way, φ[t] is used to denote the formula with that variable replaced by t, e.g. both
( f < 12)[s] and ( f (now) < 12)[s] mean f (s) < 12. We use conditional if-then-else expressions in formulas
throughout. We write f = IF φ THEN t1 ELSE t2 to mean [φ ∧ f = t1] ∨ [¬φ ∧ f = t2]. In case quantifiers
appear inside the if -condition, we take some liberties with notation and the scope of variables in that we write
f = IF ∃x. φ THEN t1 ELSE t2 to mean ∃x [φ ∧ f = t1] ∨ [( f = t2) ∧ ¬∃x. φ]. Finally, it is also useful to have

1We will subsequently introduce a few more distinguished predicates when modeling knowledge, sensing and nondeterminism.
2For simplicity, only functional fluents are introduced, and their predicate counterparts are ignored. (Distinguished symbols like Poss are an

exception.) This is without loss of any generality since predicates can be thought of functions that take one of two values, the first denoting true
and the other denoting false.
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certain abbreviations that will macro expand to L-formulas. These abbreviations are used as logical terms, that is,
as arguments to functions or predicates. If E is such an expression, its expansion is characterized by a definition of
the form E = u .

= φ(u), where u is a variable, and φ(u) is an L-formula with u free. This should be interpreted as
follows. Let ρ(u) be any atomic formula with u free. Then the expression ρ(E) should be understood as standing for
the formula ∃u(φ(u) ∧ ρ(u)).

Basic action theory
Following [58], we model dynamic domains in L by means of a basic action theoryD, which consists of domain-

independent foundational axioms, unique name axioms for actions (see [58]), and (1) axioms D0 that describe what
is true in the initial states, including S0;3 (2) precondition axioms4 of the form Poss(A(~x), s) ≡ ΠA(~x, s) describing
executability conditions using a special fluent Poss; and (3) successor state axioms of the following form stipulating
how fluents change:

f (do(a, s)) = u ≡ Φ f (u, a, s).

For example, consider the action fwd(z) of moving precisely z units towards the wall, but the motion stops when the
wall is reached:

h(do(a, s)) = u ≡ ∃z[a = fwd(z) ∧ u = max(0, h(s) − z)] ∨
¬∃z[a = fwd(z)] ∧ u = h(s).

Moving away from the wall can be accomplished by providing a negative number as an argument to the action. This
sentence also states that fwd(z) is the only action affecting fluent h, in effect incorporating a solution to the frame
problem [58]. This successor state axiom can also be written using if-then-else as:

h(do(a, s)) = IF ∃z(a = fwd(z))
THEN max(0, h(s) − z) ELSE h(s). (1)

(If there are more actions that affect this fluent, they can be nested within else.) Henceforth, successor state axioms
are taken to be in the form:

f (do(a, s)) = E f (a)[s]. (2)

Thus, as a consequence of our notational conventions introduced earlier, we will be able to write successor state
axioms as equality-expressions, and use the RHS as terms than can be substituted in formulas.

Given an action theory, an agent reasons about actions by means of entailments of D. A fundamental task in
reasoning about action is that of projection [58], where we test which properties hold after actions. Formally, suppose
φ is a situation-suppressed formula or uses the special symbol now. Given a sequence of actions a1 through an, we are
often interested in asking whether φ holds after these:

D |= φ[do([a1, . . . , an], S0)]?

Entailments are wrt standard Tarskian models, but we will also assume that models assign the usual interpretations to
=, <, >, 0, 1, +, ×, /, −, e, π, and xy (exponentials). See [10] for discussions.

Likelihood and belief
The BHL model of belief [2] builds on a treatment of knowledge in L [62]. Here we present a simpler variant

based on two distinguished fluents l and p [10].
The term l(a, s) is intended to denote the likelihood of action a in situation s. For example, suppose sonar(z) is the

action of reading the value z from a sonar that measures the distance to the wall, h. We might assume that this action
is characterized by a simple discrete error model:

l(sonar(z), s) = IF |h(s) − z| ≤ 1 THEN 1/3 ELSE 0 (3)

3Note thatD0 can include any (classical) first-order sentence about S0, such as h(S0) > 12 and f1(S0) , 2 ∨ f2(S0) = 5.
4Free variables in any of these axioms should be understood as universally quantified from the outside.
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which stipulates that the difference between a reading of z and the true value h is either {0,−1, 1} with probability 1/3,
assuming that h and z take integer values.

To capture the idea that the likelihood of reading z is obtained from a normal curve whose mean is h, one would
use:

l(sonar(z), s) = N(z; h, 4)[s] (4)

which gives the sensor’s reading a variance of 4. This is referred to as an additive Gaussian noise model [69].5

Note that the l-axioms are more expressive than those typically seen in probabilistic formalisms, and can be
context-dependent. For example, to model a sensor with systematic bias at subzero temperatures, we might have

l(sonar(z), s) = IF temp(s) > 0
THEN N(z; h, 1) ELSE N(z; h + 2, 1).

In general, the action theory D is assumed to contain for each sensor sense(~x) that measures a fluent f , an axiom
of the form:

l(sense(~x), s) = Errsense(~x, f (s)),

where Errsense(u1, u2) is some expression with only two free variables u1 and u2, both numeric.6 Noise-free physical
actions are given a likelihood of 1. (Noisy physical actions will be treated in a subsequent section.)

Next, the p fluent determines a (subjective) probability distribution on situations.7 The term p(s′, s) denotes the
relative weight accorded to situation s′ when the agent happens to be in situation s, as in modal probability logics
[26]. Now, the task of the modeler is to specify the initial properties of p as part ofD0 using ι and S0, e.g.:

p(ι, S0) = IF h(ι) ∈ {2, . . . , 11} THEN .1 ELSE 0 (5)

says that h is drawn from a uniform distribution, corresponding to Figure 1. Suppose we are instead in a setting where
the robot can move in a 2-dimensional space, as shown in Figure 2. Suppose the fluent v captures it position along the
Y-axis. Then a constraint such as

p(ι, S0) = U(h; 2, 12) × N(v; 0, 1)[ι] (6)

says that the agent does not know the initial values of h and v, but thinks of them as drawn independently from a
uniform distribution on [2, 12], and from a standard normal distribution. Since p is just like any other fluent, the
framework is more expressive than many probabilistic formalisms. For example,

∀ι(p(ι, S0) = U(h; 2, 3)[ι])
∨

∀ι(p(ι, S0) = U(h; 10, 20)[ι])
(7)

says that the agent believes h to be uniformly distributed on [2,3] or on [10,20], without being able to say which.
To give p the intended properties, the following non-negative constraint is assumed to be included inD0 [2]:

∀ι, s. p(s, ι) ≥ 0 ∧ (p(s, ι) > 0 ⊃ Init(s)) (P1)

5Note that the BHL scheme is limited to discrete distributions, but we will shortly discuss its extension to continuous domains, and so are
introducing the features of the full language.

6This captures the idea that the error model of a sensor measuring f depends only on the true value of f , and is independent of other factors.
In a sense this follows the Bayesian model that conditioning on a random variable f is the same as conditioning on the event of observing f . But
this is not required in general in the BHL scheme, an issue we ignore for this paper. See [2] for discussions. Moreover, as usual [62], we assume
that physical actions have trivial sensing values, and that sensing actions do not affect physical properties. Physical actions with non-trivial sensing
axioms are to be treated as two separate actions, the first capturing the physical effects and the second capturing the sensing ones.

7The p fluent is a numeric version of the K fluent used in modeling knowledge in the situation calculus [62]. (One could let K(s′, s) be an
abbreviation for p(s′, s) > 0, for example.) See Scherl and Levesque [62] on how features such as positive and negative introspection can be
enabled by constraining the accessibility relation K, in a manner entirely analogous to standard modal logic [27]. (Different from standard modal
logics [27], however, worlds are reified as part of the syntax, but this is a minor technicality.) We will not delve into these issues further here, and
refer readers to works such as [5] that study properties of knowledge in the BHL scheme in more detail.
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Figure 2: Robot moving along both axes.

Then, by means of a remarkably simple successor state axiom for p, (P2) below, the formal specification is complete.

p(s′, do(a, s)) =

IF ∃s′′. s′ = do(a, s′′) ∧ Poss(a, s′′)
THEN p(s′′, s) × l(a, s′′)

ELSE 0

(P2)

In particular, the degree of belief in a formula φ can be accounted for in terms of an abbreviation:

Bel(φ, s) .
=

1
γ

∑
{s′:φ[s′]}

p(s′, s) (B)

where γ, the normalization factor, is understood throughout as the same expression as the numerator but with φ
replaced by true, e.g. here γ is

∑
s′ p(s′, s). Summation, and later integration, is to be understood as a logical term, so

the expression above expands to a well-formed L-formula, as shown in [10]. Note also that p and l are stipulated to
define probability distributions; see [2] for discussions.

So, as in probability logics [26], belief is simply the total weight of worlds satisfying φ. But the novelty here is
that in a dynamical setting, belief change via (B) is identical to Bayesian conditioning:

Proposition 1. [10] SupposeD includes (P1), (P2) and the likelihood axiom for a sensor sense(z) measuring f . Then

D |= Bel( f = t, do(sense(z), S0)) =
Bel( f = t, S0) · Err(z, t)∑
x Bel( f = x, S0) · Err(z, x)

Essentially, if the robot’s sensors are informative, in the sense of returning values closer to the true value, beliefs
are strengthened over time.

From sums to integrals
While the definition of belief in BHL has many desirable properties, it is defined in terms of a summation over

situations, and therefore precludes fluents whose values range over the reals. The continuous analogue of (B) then
requires integrating over some suitable space of values.

As it turns out, a suitable space can be found. First, assume that there are n fluents f1, . . . , fn in L, and that these
take no arguments other than the situation argument.8 Next, suppose that that there is exactly one initial situation for
every possible value of these fluents [45]:

[∀~x∃ι
∧

fi(ι) = xi] ∧ [∀ι, ι′.
∧

fi(ι) = fi(ι′) ⊃ ι = ι′] (P3)

8As we shall shortly see, our reformulation of the BHL scheme requires us to enumerate the n random variables of the domain (for some large
n) [10]. If we were to assume that the arguments of all fluents, even k-ary ones, are taken from finite sets then too we would be able to enumerate
the n random variables of the domain. However, from the point of view of situation calculus basic action theories, fluents are typically allowed to
take arguments from any set, including infinite ones. In probabilistic terms, this would correspond to having a joint probability distribution over
infinitely many, perhaps uncountably many, random variables. We have as yet no good ideas about how to deal with it. See [10] for discussions.
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Under these assumptions, it can be shown that the summation over all situations in (B) can be recast as a summation
over all possible initial values x1, . . . , xn for the fluents:

Bel(φ, s) .=
1
γ

∑
~x

P(~x, φ, s) (B′)

where P(~x, φ, s) is the (unnormalized) weight accorded to the successor of an initial world where fi equals xi:

P(~x, φ, do(δ, S0)) .=
IF ∃ι.

∧
fi(ι) = xi ∧ φ[do(δ, ι)]

THEN p(do(δ, ι), do(δ, S0))
ELSE 0

for any action sequence δ. In a nutshell, because every situation has an initial situation as an ancestor, and because
there is a bijection between initial situations and possible fluent values, it is sufficient to sum over fluent values to
obtain the belief even for non-initial situations. Note that unlike (B), this one expects the final situation term do(δ, S0)
mentioning what actions and observations took place to be explicitly specified, but that is just what one expects when
the agent reasons about its belief after acting and sensing.

The generalization to the continuous case then proceeds as follows. First, we observe that some (though possibly
not all) fluents will be real-valued, and that p(s′, s) will now be a measure of density not weight. For example, if h is
real-valued, we might have the following analogue to (5):

p(ι, S0) = IF 2 ≤ h(ι) ≤ 12 THEN .1 ELSE 0 (8)

which says that the true initial value of h is drawn from a uniform distribution on [2,12]. Similarly, the P term above
now measures (unnormalized) density rather than weight.

Now suppose fluents are partitioned into two groups: the first k take their values x1, . . . , xk from R, while the rest
take their values yk+1, . . . , yn from countable domains, then the degree of belief in φ is an abbreviation for:

Bel(φ, s) .=
1
γ

∫
~x

∑
~y
P(~x · ~y, φ, s) (B+)

That is, the belief in φ is obtained by ranging over all possible fluent values, and integrating and summing the den-
sities of successor situations where φ holds. For ease of presentation, we lump the discrete and continuous variables
as ~x and use the integral symbol to mean integration over uncountable domains or summation over countable domains
as appropriate.

To summarize the formalization, a basic action theory D henceforth is assumed to additionally include: (a) (P1)
and (P3) as part ofD0; (b) (P2) as part ofD’s successor state axioms, and (c) sensor likelihood axioms.

3. Regression for Discrete Domains

We now investigate a computational mechanism for reasoning about beliefs after a trajectory. This is a general-
ization of the regression operator for knowledge over exact acting and sensing investigated in [62]. In this section, we
focus on discrete domains, where a weight-based notion of belief would be appropriate. Domains with both discrete
and continuous variables are reserved for the next section.

Formally, given a basic action theory D, a sequence of actions δ, we might want to determine whether a formula
φ holds after executing δ starting from S0:

D |= φ[do(δ, S0)] (9)

which is called projection [58]. When it comes to beliefs, and in particular how that changes after acting and sensing,
we might be interested in calculating the degrees of belief in φ after δ: find a real number r such that

D |= Bel(φ, do(δ, S0)) = r. (10)
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The obvious method for answering (9) is to translate bothD and φ into a predicate logic formula. This approach,
however, presents a serious computational problem because belief formulas expand into a large number of sentences
using (P2), resulting in an enormous search space with initial and successor situations. The other issue with this
approach is that sums (and integrals in the continuous case) reduce to complicated second-order formulas.

We now introduce a regression procedure to simplify both (9) and (10) to queries about Bel(φ, S0), over arithmetic
expressions, for which standard probabilistic reasoning methods can be applied. For this purpose, in the sequel, Bel
is treated as a special syntactic operator rather than as an abbreviation for other formulas. To see a simple example of
the procedure, imagine the robot is interested in the probability of h=7, given (5), after reading 5 from a sonar:

Bel(h = 7, do(sonar(5), S0)) (11)

If we are to take the sonar’s model to be (3), then (11) should be 0 by Bayesian conditioning because the likelihood of
the true value being 7 given an observation of 5 is 0. Regression would reduce the term (11) to one over initial priors:

1
γ

∑
x∈{2,...,11}

Err(5, x) × Bel(h = x ∧ h = 7, S0) (12)

where Err is the error model from (3). By the condition inside Bel, the only valid value for x is 7 for which the prior is
.1 but Err(5, 7) is 0. Thus, (11) = (12) = 0. In general, regression is a recursive procedure that works iteratively over
a sequence of actions discarding one action at a time, and it can be utilized to measure any logical property about the
variables, e.g. 2π · h < 12, h/fuel ≤ mileage, etc.

Formally, regression operates at two levels. (Note that this differs slightly from [58, 62].) At the formula level,9 we
introduce an operator R for regressing formulas, which over equality literals sends the individual terms to an operator
T for regressing terms. These operators proceed by mutual recursion. The fundamental objective of these operators
is eliminate do symbols. The end result, then, is to transform any expression whose situation term is a successor of
S0, say do([a1, a2], S0), to one about S0 only, at which pointD0 is all that is needed. As hinted earlier, these operators
treat Bel(φ, s) as though they are special sorts of terms. Throughout the presentation, we assume that the inputs to
these operators do not quantify over all situations.

Definition 2. For any term t, we inductively define T [t]:

1. If t is situation-independent (e.g. x, π2/3) then T [t] = t.

2. T [g(t1, . . . , tk)] = g(T [t1], . . . ,T [tk]),

where g is any non-fluent function (e.g. ×,+,N).

3. For a fluent function f , T [ f (s)] is defined inductively

(a) if s is of the form do(a, s′) then
T [ f (s)] = T [E f (a)[s′]]

(b) else T [ f (s)] = f (s)

where, in (a), we use the instance of the RHS of the successor state axiom wrt a, as obtained from (2).

4. T [Bel(φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a noise-free physical action, then

T [Bel(φ, s)] = T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].

9For simplicity, in what follows, functional fluents in formulas are only allowed to occur as arguments of an equality literal. It is easy to show
that every sentence can be transformed into an equivalent one in the required form, and the transformation is linear in the size of the original
sentence, e.g. h ≤ 9 is written as ∃u (h = u ∧ u ≤ 9).
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(b) if s is of the form do(a, s′) and a is a sensing action sense(z) such that l(sense(z), s) = Err(z, fi(s)) is inD
then

T [Bel(φ, s)] =

1
γ

∑
xi

Err(z, xi) × T [Bel(ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi, and γ is the normalization factor and is the same expression
as the numerator but φ replaced by true.

(c) else T [Bel(φ, s)] = Bel(φ, s).

Definition 3. For any formula φ, we define R[φ] inductively:

1. R[t1 = t2] = (T [t1] = T [t2])

2. R[G(t1, . . . , tk)] = G(T [t1], . . . ,T [tk])

where G is any non-fluent predicate (e.g. =, <).

3. When ψ is a formula, R[¬ψ] = ¬R[ψ],
R[∀xψ] = ∀xR[ψ], R[∃xψ] = ∃xR[ψ].

4. When ψ1 and ψ2 are formulas,
R[ψ1 ∧ ψ2] = R[ψ1] ∧ R[ψ2],
R[ψ1 ∨ ψ2] = R[ψ1] ∨ R[ψ2].

5. R[Poss(A(~t), s)] = R[ΠA(~t, s)],

where the instance of the RHS of the precondition axiom wrt A(~t) replaces the atom (see Section 2).

This completes the definition of T and R. We now go over the justifications for the items, starting with the
operator T . In item 1, non-fluents simply do not change after actions. In item 2, T operates over sums and products
in a modular manner. In item 3, provided there are remaining do symbols, the physics of the domain determines what
the conditions must have been in the previous situation for the current value to hold. In item 4, if there is a remainder
physical action, part (a) says that belief in φ after actions is simply the prior belief about the regression of φ, contingent
on action executability. Part (b) says that the belief about φ after observing z for the true value of fi is the prior belief
for all possible values xi for fi that agree with φ, times the likelihood of fi being xi given z. The appropriateness of
parts (a) and (b) depend on the fact that physical actions do not have any sensing aspect, while sensing actions do
not change the world. Part (c) simply says that T stops when no do symbols appear in s. We proceed now with
the justifications for R. Over equality atoms, R separates the terms of the equality and sends them to T . Likewise,
over non-fluent predicates. Also, R simplifies over connectives in a straightforward way. When Poss is encountered,
preconditions take its place.

The main result for R regarding projection is:

Theorem 4. SupposeD is any action theory, φ any situation-suppressed formula and δ any action sequence:

D |= φ[do(δ, S0)] iff D0 ∪Duna |= R[φ[do(δ, S0)]]

whereDuna is the unique name assumption and R[φ[do(δ, S0)]] mentions only a single situation term, S0.

Proof: Like in [62], it suffices to show that regression preserves logical equivalence,

D |= φ[do(δ, S0)] ≡ R[φ[do(δ, S0)]].

This is achieved by showing that each step preserves logical equivalence. The process will terminate because each
step in regression eliminates the outer do from the situation term, and the number of do function symbols in any
ground situation term is finite. Since each step preserves equivalence, the operator does too as well, resulting in a
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sentence not containing any actions, so the successor state axioms are no longer required. Thus, D |= R[φ[do(δ, S0)]]
iffD0 ∪Duna |= R[φ[do(δ, S0)]].

To prove that each step preserves logical equivalence, it suffices to show:

D |= ∀a, s. φ[do(a, s)] ≡ R[φ[do(a, s)]].

Proof is by induction on the size of φ. We treat the size of φ[do(a, s)] as the size of φ[s] plus 1. For the base case,
Definition 3’s items 1 and 2, which then involve Definition 2’s items 1, 2, 3(b) and 4(c) are immediate, by means of
the standard interpretation of equality and arithmetic symbols. Definition 3’s items 3 and 4 follow from the definition
of negation and quantifiers, and the hypothesis.

Next, Definition 3’s item 5 follows from the precondition axioms, and Definition 2’s item 3(a) follows from the
successor state axioms. For Definition 4(a), from (B), we have:

Bel(φ, do(a, s)) .
=

1
γ

∑
{s′:φ[s′]}

p(s′, do(a, s))

But, by definition of the successor state axiom of p, p(s′, do(a, s)) can be obtained from p(s′′, s) × l(a, s′′) for
s′′ = do(a, s′) such that Poss(a, s′′) ⊃ R[φ[do(a, s′′)]]. Then, by definition of Bel, we get L × Bel(Poss(a, now) ⊃
R[φ[do(a, now)]], s). For noise-free actions, we obtain Definition 2’s item 4(a) with L = 1. For noisy sensing, we note
that l(sense(z), s′′) is determined by the value of the f fluent at s′, and so L = Err(z, f (s′)), which is captured in the
regression operator by simply summing over possible values of x but testing the actual value at s′, akin to an indicator
function.

Here,Duna is only needed to simplify action terms [58] e.g. from fwd(4) = fwd(z),Duna infers z = 4.
The readers may notice many parallels between this regression operator, and the one for categorical knowledge in

[62], which should not be surprising as the new operator is a generalization of the previous one.
Now when our goal is to explicitly compute the degrees of belief in the sense of (10), we have the following

property for T , which follows as a corollary from the above theorem:

Theorem 5. LetD be as above, φ any situation-suppressed formula and δ any sequence of actions. Then:

D |= Bel(φ, do(δ, S0)) = T [Bel(φ, do(δ, S0))]

where T [Bel(φ, do(δ, S0))] is a term about S0 only.

Theorem 5 essentially shows how belief about trajectories is computable using beliefs about S0 only. Note that,
since the result of T is a term about S0, no sentence outside of D −D0 is needed. We now illustrate regression with
examples. Using Theorem 5, we reduce beliefs after actions to initial ones. At the final step, standard probabilistic
reasoning is applied to obtain the end values.

Example 6. LetD contain the union of (1), (3) and (5).10 Then the following equality expressions are entailed byD:

1. Bel(h = 10 ∨ h = 11, S0) = .2

Bel(h ≤ 9, S0) = .8

Terms about S0 are unaffected by T . So this amounts to inferring probabilities usingD0.

2. Bel(h = 11, do(fwd(1), S0))

= T [ Bel(h = 11, do(fwd(1), S0)) ]

= T [ Bel( R[(h = 11)[do(fwd(1), now)]] , S0) ] (i)

= T [Bel( T [h(do(fwd(1), now))] = T [11] , S0)] (ii)

10Initial beliefs can also be specified forD0 using Bel, e.g. (5) can be replaced inD0 with Bel(h = u, S0) = .1 for u ∈ {2, . . . , 11}.
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= T [Bel(max(0, h − 1) = 11, S0)] (iii)

= Bel(max(0, h − 1) = 11, S0) (iv)

= 0

First, since action preconditions are all true, Poss is ignored everywhere. We underline to emphasize the ex-
pressions undergoing transformations. We begin always by applying T to the main term, in this case getting
(i), by means of T ’s item 4(a). Next, R’s item 1 is applied in (ii). While T [11] = 11 by T ’s item 1, for
T [h(do(fwd(1), now))] we use item 3 and (1) to get:

T [max(0, h(now) − 1)] = max(0, h(now) − 1)

which is substituted in (ii) to give (iii). Finally, T ’s item 4(c) yields (iv), which is a belief term about S0. Now
the only valid value for h in (iv) is 12, but for h = 12 the robot has a belief of 0 initially.

3. Bel(h ≤ 5, do(sonar(5), S0))

=
1
γ

∑
x∈{2,...,11}

Err(5, x) × T [Bel(h = x ∧ h ≤ 5, S0)] (i)

=
1
γ

∑
x∈{2,...,11}

Err(5, x) × Bel(h = x ∧ h ≤ 5, S0) (ii)

=
1
γ

(
1
3
· Bel(h = 4 ∧ h ≤ 5, S0)

+
1
3
· Bel(h = 5 ∧ h ≤ 5, S0) (iii)

+
1
3
· Bel(h = 6 ∧ h ≤ 5, S0)

)
=

1
γ

(
1
3
· Bel(h = 4, S0) +

1
3
· Bel(h = 5, S0)

)
(iv)

=
1
γ
·

2
30

= 2/3

where Err(5, x) is the model from (3). First, T ’s item 4(b) yields (i), and then item 4(c) yields (ii). Since
Err(5, x) is non-zero only for x ∈ {4, 5, 6}, (ii) is simplified to (iii) and (iv) resulting in 1/15 · 1/γ. We calculate
γ as follows:

=
∑

x∈{2,...,11}

Err(5, x) × T [Bel(h = x ∧ true, S0)] (i′)

=
∑

x∈{2,...,11}

Err(5, x) × Bel(h = x, S0) (ii′)

= 3/30.

4. Regression for General Domains

We now generalize regression for domains with discrete and continuous variables, for which a density-based
notion of belief is appropriate. (Physical actions are still noise-free for this section.) The main issue is that when
formulating posterior beliefs after sensing, something like Definition 2’s item 4(b) will not work. This is because over
continuous spaces the belief about any individual point is 0. Therefore, we will be unpacking belief in terms of the
density function, i.e. in terms of P. These P(~x, φ, s) terms, which will now also be treated as special sorts of syntactic
terms, are separately regressed. (Of course, the regression of weight-based belief can be approached on similar lines.)
Recall that P(~x, φ, S0) is simply the density of an initial world (where fi = xi) satisfying φ. Formally, term regression
T is defined as follows:
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Definition 7. For any term t, we inductively define:

1, 2 and 3 as before.

4. T [P(~x, φ, s)] is defined inductively:

(a) if s is of the form do(a, s′) and a is a physical action then

T [P(~x, φ, s)] = T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ R[φ[do(a, now)]].

(b) if s is of the form do(a, s′) and a is a sensing action sense(z) such that l(sense(z), s) = Err(z, fi(s)) is inD,
then:

T [P(~x, φ, s)] = Err(z, xi) × T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi.

(c) else T [P(~x, φ, s)] = P(~x, φ, s).

5. T [Bel(φ, s)] =
1
γ

∫
~z
T [P(~z, φ, s)].

R for formulas is defined as before.

It is worth observing that there is no summation (or integration) symbol when applying T over noisy sensors
because T over Bel expands it first as the integral over the unnormalized density expression P(~z, φ, s). In contrast,
previously T ’s application over a Bel term in Definition 2 did not modify the term.

With this new definition, the desired property still holds:

Theorem 8. LetD be any action theory, φ any situation-suppressed formula and δ any action sequence. Then

D |= Bel(φ, do(δ, S0)) = T [Bel(φ, do(δ, S0))]

where T [Bel(φ, do(δ, S0))] is a term about S0 only.

The proof is analogous to the previous correctness theorem.

Example 9. Consider the following continuous variant of the robot example. Imagine a continuous uniform distribu-
tion for the true value of h, as provided by (8). Suppose the sonar has the following error profile:

l(sonar(z), s) = IF z ≥ 0
THEN N(z − h(s); 0, 4)

ELSE 0
(13)

which says the difference between a nonnegative reading and the true value is normally distributed with mean 0 and
variance 4. (A mean of 0 implies there is no systematic bias.) Now, let D be any action theory that includes (1), (8)
and (13). Then the following equalities are entailed byD:

1. Bel(h = 3 ∨ h = 4, S0) = 0,

Bel(4 ≤ h ≤ 6, S0) = .2

T does not change terms about S0. Here, for example, the second belief term equals ∫ 6
4 .1dx = .2.

2. Bel(h ≥ 11, do(fwd(1), S0))

=
1
γ

∫
x∈R
T [ P(x, h ≥ 11, do(fwd(1), S0)) ] (i)

=
1
γ

∫
x∈R
T [P(x,R[ψ], S0)] (ii)
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where ψ is (h ≥ 11)[do(fwd(1), now)]

=
1
γ

∫
x∈R
T [P(x,max(0, h − 1) ≥ 11, S0)] (iii)

=
1
γ

∫
x∈R

P(x,max(0, h − 1) ≥ 11, S0) (iv)

=
1
γ

∫
x∈R

p(ι, S0) if ∃ι. h(ι) = x ∧ h(ι) ≥ 12
0 otherwise

(v)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12] and x ≥ 12
0 otherwise

(vi)

=
1
γ

∫
x∈R

.1 if x = 12
0 otherwise

(vii)

= 0

We use T ’s item 5 to get (i), after which item 4(a) is applied. On doing R in (ii), along the lines of Example 6.2,
we obtain (iii). T ’s item 4(c) then yields (iv), and stops. In the steps following (iv), we show how P expands in
terms of p, and how the space of situations resolves into a mathematical expression, yielding 0.11

3. Bel(h = 0, do(fwd(4), S0))

=
1
γ

∫
x∈R
T [P(x,R[(h = 0)[do(fwd(4), now)]], S0)] (i)

=
1
γ

∫
x∈R
T [P(x,max(0, h − 4) = 0, S0)] (ii)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12] and x ≤ 4
0 otherwise

(iii)

= .2

By means of (1), after moving forward by 4 units the belief about h is characterized by a mixed distribution
because h = 0 is accorded a .2 weight (i.e. from all points where h ∈ [2, 4] initially), while h ∈ (0, 8] are
associated with a density of .1. Here, T ’s item 5 and 4(a) are triggered, and the removal of T using 4(c) is not
shown. The end result is that the density function is integrated for 2 ≤ x ≤ 4 leading to .2. (γ is 1.)

4. Bel(h = 4, do(fwd(−4), do(fwd(4), S0)))

=
1
γ

∫
x∈R
T [P(x,∃u. h = u ∧

4 = max(0, u + 4), do(fwd(4), S0))] (i)

=
1
γ

∫
x∈R
T [P(x,∃u. u = max(0, h − 4) ∧

4 = max(0, u + 4), S0)] (ii)

=
1
γ

∫
x∈R

.1 if x ∈ [2, 12], x ≤ 4
0 otherwise

(iii)

= .2

We noted above that the point h = 4 gets a .2 weight on executing fwd(4), after which it obtains a h value of
0. The weight is retained on reversing by 4 units, with the point now obtaining a h value of 4. The derivation
invokes two applications of T ’s item 4(a). We skip the intermediate R steps. (γ evaluates to 1.)

11Given certain assumptions, it is possible to further reduce logical expressions involving fluents to a mathematical expression using only those
variables that appear in the integral. We expand on this in a longer version of the paper.
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Figure 3: Belief density change for h at S0 (in blue), after sensing 5 (in green) and after sensing 5 twice (in red).

5. Bel(h = 4, do(fwd(4), do(fwd(−4), S0)))

=
1
γ

∫
x∈R
T [P(x,∃u. u = max(0, h + 4) ∧

4 = max(0, u − 4), S0)] (i)

= 0

Had the robot moved away first, no “collapsing” of points takes place, h remains a continuous distribution
and no point is accorded a non-zero weight. T steps are skipped but they are symmetric to the one above,
e.g. compare (i) here and (ii) above. But then the density function is non-zero only for the individual h = 4.

6. Bel(4 ≤ h ≤ 6, do(sonar(5), S0))

=
1
γ

∫
x∈R
N(5 − x; 0, 4) × T [P(x, ψ, S0)] (i)

where ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫
x∈R

.1 · N(5 − x; 0, 4) if x ∈ [2, 12], x ∈ [4, 6]
0 otherwise

≈ .41

We obtain (i) after T ’s item 5 and then 4(b) for sensing actions. That is, belief about h ∈ [4, 6] is sharpened
after observing 5. Basically, we are integrating a function that is 0 everywhere except when 4 ≤ x ≤ 6 where it
is .1 × N(5 − x; 0, 4), normalized over 2 ≤ x ≤ 12.

7. Bel(4 ≤ h ≤ 6, do(sonar(5), do(sonar(5), S0))

=
1
γ

∫
x∈R
N(5 − x; 0, 4) × T [P(x, ψ, s))] (i)

where s = do(sonar(5), S0), ψ is h = x ∧ 4 ≤ h ≤ 6

=
1
γ

∫
x∈R

[N(5 − x; 0, 4)]2 × T [P(x, ψ, S0)] (ii)

≈ .52

As expected, two successive observations of 5 sharpens belief further. Derivations (i) and (ii) follow from T ’s
item 5, and two successive applications of item 4(b). Thus, we are to integrate .1 × [N(5 − x; 0, 4)]2 between
[4, 6] and normalize over [2, 12]. These changing densities are plotted in Figure 3.

5. Two Special Cases

Regression is a general property for computing properties about posteriors in terms of priors after actions. It is
therefore possible to explore limited cases, which might be appropriate for some applications. We present two such
cases.
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Conjugate distributions
Certain types of systems, such as Gaussian processes, admit an effective propagation model [69]. The same

advantages can be observed in our framework. We illustrate this using an example. Assume a fluent f , and suppose
D0 is the union of (P3), (P1) and the following specification:

p(ι, S0) = N( f (ι); µ1, σ1
2)

which stipulates that the true value of f is believed to be normally distributed. Assume the following sensor inD:

l(sense(z), s) = N(z − f (s); µ2, σ2
2)

Then it is easy to show that estimating posteriors yields a product of Gaussian density function (that is also a Gaussian
density function [16]), which is inferred by T :

T [Bel(b ≤ f ≤ c, do(sense(z), S0))] =

1
γ

∫ c
b N(x; µ1, σ1

2) · N(z − x; µ2, σ2
2)dx

Distribution transformations
Certain actions affect priors in a characteristically simple manner, and regression would account for these changes

as an appropriate function of the initial belief state. We illustrate two instances using Example 9. First, consider an
action grasp(z) that grabs object z. Because the action of grasping does not affect h by way of (1), we get:

T [Bel(h ≤ b, do(grasp(obj5), S0))] = Bel(h ≤ b, S0)

So no changes to h’s density are required. Second, consider ground actions with the property that two distinct values
of f do not become the same after that action, e.g., for initial states this means:

∀ι, ι′. f (ι) , f (ι′) ⊃ f (do(a, ι)) , f (do(a, ι′))

Think of fwd(−4) that agrees with this, but fwd(4) need not. We can show that such actions “shift” priors:

T [Bel(h ≤ b, do(fwd(−n), S0))] = Bel(h ≤ b − n, S0)

Intuitively, the probability of h being in the interval [b, c], irrespective of the distribution family, is the same as the
probability of h ∈ [b + n, c + n] after fwd(−n). Thus, regression derives the initial interval given the current one.

6. Regression over Noisy Actions

The regression operator thus far was limited to noise-free actions and noisy sensing. We first show how the logical
account is extended to handle noisy actions (following [10]). We then extend the regression operator.

The idea behind noisy actions is that an agent might attempt a physical move of 3 units, but as a result of the limited
accuracy of effectors, actually move (say) 3.094 units. Thus, unlike sensors, where the reading is nondeterministic,
observable, but does not affect fluents, the outcome of noisy actions is nondeterministic, unobservable and changes
fluent properties. Of course, when attempting to move 3 units, the agent knows that an actual move by 3.094 units is
much more likely than 30.94 units, and that is reflected in a noise model.

While [2] relied on Golog [43] to capture noisy actions, a simpler proposal is given in [10]. Here, instead of an
action like fwd(x), we use an action fwd(x, y) where x is the intended motion (3 units) known to the agent and y is the
actual motion (say, 3.094 units) unknown to the agent. The successor state axiom for h would be written to reflect the
fact that its value is changed by the second argument:

h(do(a, s)) = IF ∃x, y(a = fwd(x, y))
THEN max(0, h(s) − y) ELSE h(s). (14)
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Precondition axioms would stipulate conditions for doing the intended action, as usual. For example,

Poss(fwd(x, y), s) ≡ x > 0

says that as long as the intended value is not zero units, all possible values for y are permitted. Unlike noise-free
actions where the likelihood is always 1, noisy actions would have non-trivial l-axioms and might further constrain
unintended outcomes:

l(fwd(x, y), s) = IF y = x THEN .9 ELSE (IF y = 0 THEN .1 ELSE 0). (15)

Together with the precondition axiom that disallows zero and negative values for x, the l-axiom says that the likelihood
of y being exactly x is .9, that the likelihood of no move happening is .1 and all other possibilities are improbable.
Analogously, a Gaussian noise model might be defined as follows:

l(fwd(x, y), s) = N(y; x, 1).

This axiom says that the actual value moved is normally distributed around the intended value, with a variance of 1.
In general, we assume that for each noisy action act(x, y), the action theoryD includes an axiom of the form:12

l(act(x, y), s) = Erract(x, y).

Of course, we will also need to adapt the definition of Bel to account for not knowing the actual amount moved,
by integrating over the possible choices. The intuition is this: any of these outcomes are considered possible, so the
belief state of the agent would entertain all of these outcomes as possible successor situations.

Formally, recall that Bel(φ, s) was previously defined in terms of P(~x, φ, do(δ, s)) wrt some ground action sequence
δ of the form [a1(c1), . . . , ak(ck)]. In the noisy action setting, we are dealing with ground action sequences of the form
δ = [a1(c1, d1), . . . , ak(ck, dk)]. So first define:

P(~x · ~v, φ, do(δ, S0)) .=
IF ∃ι.

∧
fi(ι) = xi ∧ φ[do(δ′, ι)]

THEN p(do(δ′, ι), do(δ, S0))
ELSE 0

where δ′ is a possible outcome [a1(c1, v1), . . . , ak(ck, vk)], which has free variables v1, . . . , vk that are to be ground wrt
the domain of the integration operator in Bel. Basically, for each possible instantiation of ~v, a different successor
situation do(δ′, ι) is realized. So, the above expression checks whether φ holds at this successor situation, and then
retrieves the p-value of that situation relative to the real world do(δ, S0). It then follows that Bel(φ, s) is defined as:

Bel(φ, s) .=
1
γ

∫
~x

∫
~v

P(~x · ~v, φ, s) (16)

We are now ready to define term and formula regression:

Definition 10. We define T and R as in Definition 7 except with the following change to item 4(b):

If s is of the form do(a, s′) and a is a sensing action sense(z) such that l(sense(z), s) = Err(z, fi(s)) is inD, then:

T [P(~x, φ, s)] = Err(z, xi) × T [P(~x, ψ, s′)]

where ψ is Poss(a, now) ⊃ φ ∧ fi(now) = xi.

If s is of the form do(a, s′) and a is a noisy action act(n,m) such that l(act(u, v), s) = Err(u, v) is inD then:

T [P(~x, φ, s)] =
∫

v Err(n, v) × T [P(~x · v, ψ(v), s′)]

where ψ(v) is Poss(act(n, v), now) ⊃ R[φ[do(act(n, v), now)]].

12For ease of presentation, we are assuming that noisy actions only come with two arguments, one standing for the intended value and the other
for the actual outcome. It is straightforward to generalize the likelihood axiom for k-ary actions, or even handle context-dependent noisy actions
like we have enabled for noisy sensing. This is possible by allowing fluents as additional arguments in Erract .
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So, while T for noisy sensing is the same as before, when we have a ground noisy action act(n,m), we observe
the following. First, since the agent does not actually observe m, a fresh variable v is introduced, which is to be
the integration variable, and the density is multiplied by the noise model. The density expression then regresses the
formula wrt act(n, v). In fact, as we show below, this regression is best realized by keeping v as a free variable, because
that then gives us a single expression over which we can integrate.

Most significantly, the desired property still holds, with an analogous proof:

Theorem 11. LetD be any action theory, φ any situation-suppressed formula and δ any action sequence. Then

D |= Bel(φ, do(δ, S0)) = T [Bel(φ, do(δ, S0))]

where T [Bel(φ, do(δ, S0))] is a term about S0 only.

Example 12. Let us consider the same domain as in Example 9, but in using the noisy action model from (14) and
(15). Then we get the following entailments fromD:

1. Bel(h = 3 ∨ h = 4, S0) = 0,

Bel(4 ≤ h ≤ 6, S0) = .2

T does not change terms about S0. Here, for example, the second belief term equals ∫ 6
4 .1dx = .2.

2. Bel(h ≥ 11, do(fwd(1, 0), S0))

=
1
γ

∫
x∈R
T [ P(x, h ≥ 11, do(fwd(1, 0), S0)) ] (i)

=
1
γ

∫
x∈R

∫
v∈R

Err(1, v) × T [P(x · v,R[ψ(v)], S0)] (ii)

where ψ(v) is (h ≥ 11)[do(fwd(1, v), now)] and Err(1, v) is the error function from (15)

=
1
γ

∫
x∈R

∫
v∈R

Err(1, v) × T [P(x · v,max(0, h − v) ≥ 11, S0)] (iii)

=
1
γ

∫
x∈R

∫
v∈R

Err(1, v) × P(x · v,max(0, h − v) ≥ 11, S0) (iv)

=
1
γ

∫
x∈R

∫
v∈R

p(ι, S0) × Err(1, v) if ∃ι. h(ι) = x ∧ h(ι) ≥ 11 + v
0 otherwise

(v)

=
1
γ

∫
x∈R

∫
v∈R

.1 × Err(1, v) if x ∈ [2, 12] and x ≥ 11 + v
0 otherwise

(vi)

=
1
γ

∫
x∈R

∫
v∈R


.1 × .9 if x ∈ [2, 12] and x ≥ 12
.1 × .1 if x ∈ [2, 12] and x ≥ 11
0 otherwise

(vii)

= 0.01

The application of T and R proceeds in the same fashion as in Example 9, with the following notable changes.
In (ii), T for noisy actions is applied, which introduces a new integration symbol (over v), and the formula to be
regressed has v as a free variable. Moreover, the noise model is multiplied to the current density. As the successive
steps show, regressing the formula over actions by using the RHS of successor state axioms continues to keep v as
a free variable, until (vi). The noise model is such that v takes the value 1 with a probability of .9, and a value 0
with a probability of .1. We know from Example 9 that when the move happens by 1 unit, the regressed formula is
essentially h ≥ 12, which has a probability of 0. So the only non-zero event is when no move happens, in which case
we are interested in the prior belief of h ≥ 11, which is .1, but further multiplied by the likelihood of that outcome,
which is also .1, and so we obtain 0.01.

18



7. Progression

In the worst case, regressed formulas are exponentially long in the length of the action sequence [58], and so it
has been argued that for long-lived agents like robots, continually updating the current view of the state of the world,
is perhaps better suited. Lin and Reiter [47] proposed a theory of progression for the classical situation calculus.
What we are after is an account of progression for probabilistic beliefs in the presence of stochastic noise. However,
subtleties arise with the p fluent even in simple continuous domains. For example, consider (1), where the noise-free
action fwd(z) that moves the robot towards the wall but stopping when the robot hits the wall:

h(do(a, s)) = IF ∃z(a = fwd(z))
THEN max(0, h(s) − z) ELSE h(s).

If the robot were to begin with (6) and perform the action fwd(4), beliefs about the new value of h become much more
complex. Roughly, those points where h ∈ [2, 4] initially are mapped to a single point h = 0 that should then obtain
a probability mass of .2, while the other points retain their initial density of .1. In effect, a probability density on h is
transformed into a mixed density / distribution (and the (P3) assumption no longer holds). In the previous sections,
we dealt with this issue using regression: beliefs are regressed to the initial state where (P3) does hold, and all the
actual belief calculations can be done in the initial state.

In this section, we develop a logical theory of progression for basic action theories where such mixed distributions
do not arise.13 We provide a simple definition to support this, and then discuss general syntactic restrictions that
satisfy this requirement.

7.1. Invertible Action Theories

Our formulation of progression rests on introducing a new class of basic action theories, called invertible action
theories. Recall that successor state axioms are of the general form: f (do(a, s)) = E f (a)[s], which tells us how the
value of f changes from s to do(a, s). We will now base our work on the following question: given the value of f at
do(a, s), what is the value of f at s?

Definition 13. Given a basic action theoryD, a fluent f is said to be invertible if there is an expression H f (a) uniform
in now such thatD |= f (s) = H f (a)[do(a, s)]. We say thatD is invertible if every fluent in the theory is invertible.

Intuitively, a fluent is invertible when we can find a dual formulation of its successor state axiom, that is, where we
can characterize the predecessor value of a fluent in terms of its current value.

There are three syntactic conditions on a basic action theoryD that are sufficient to guarantee its invertibility:

i. There is an ordering on fluents such that all the fluents that appear in E f (a) other than f are earlier in the
ordering.

ii. Any situation term in E f (a) appears as an argument to one of the fluents.

iii. The mapping from the value of f (s) to the value of f (do(a, s)) given by E f (a) is bijective [70]. (This is
understood in the usual set-theoretic sense.)

13Its worth remarking that there is nothing inherently problematic about mixed distributions as far as the definability of progressed database is
concerned. Indeed, for the above example, contrast the initial theory with the one after fwd(4) below:

p(ι, s) =

.1 if h(ι) ∈ [2, 12]
0 otherwise

versus p(ι, s) =


.2 if h(ι) = 0
.1 if h(ι) ∈ (0, 8]
0 otherwise

Both of these are well-defined p-specifications. Be that as it may, it is not immediately obvious what the account of progression should look like,
in terms of the general syntactic rules that allow us to update the database so as to yield the latter initial theory. There is also an issue with the
definition of Bel, because we now need to sum over the values of h that are discrete, and integrate over the rest. Although this can be handled (see
[10]), it makes the account slightly more involved. Our proposal eschews these complications in a simple yet reasonable manner, and moreover, as
we shall shortly see, subsumes some of the analytical cases seen in the literature.
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Before considering some examples, here is the result:

Theorem 14. If a basic action theory satisfies (i), (ii) and (iii) above, then it is invertible.

Proof: The proof is by induction on the ordering given by (i). By (iii), we can take f (do(a, s)) = E f (a)[s] and solve
for f (s), obtaining an equation f (s) = H, where H mentions f (do(a, s)) and possibly other fluents f ′(s) that appear
earlier in the ordering. By induction, each f ′(s) in H can be replaced by H f ′ (a)[do(a, s)]. By (ii), the result will then
be uniform in do(a, s), and thus we obtain a formula H f (a) whereD |= f (s) = H f (a)[do(a, s)] as desired.

Example 15. Let us consider the setting from Figure 2. In particular, the effect on v might be described by:

v(do(a, s)) = u ≡ ∃z(a = mv(z) ∧ u = v(s) + z) ∨
u = v(s) ∧ ¬∃z(a = mv(z)).

This says that mv(z) is the only action affecting v, thereby incorporating a solution to the frame problem [58]. We
would now equivalently write this as:

v(do(a, s)) = IF ∃z(a = mv(z))
THEN v(s) + z ELSE v(s). (17)

Consider (17). This trivially satisfies (i) and (ii). The mapping from v(s) to v(do(a, s)) is bijective and so (iii) is
satisfied also. (In general, any E f (a) that is restricted to addition or multiplication by constants will satisfy (iii).) So
the fluent is invertible and we have v(s) = Hv(a)[do(a, s)], where Hv(a) is IF ∃z(a = mv(z)) THEN v − z ELSE v.

Example 16. Consider (1). Here the mapping is not bijective because of the max function and the fluent h is not
invertible. If h(do(α, s)) = 0 where α = fwd(4), then the value of h(s) cannot be determined and can be anything less
than 4.

Example 17. Consider a successor state axiom like this:

v(do(a, s)) = IF ∃z(a = mv(z)) THEN (v(s))z ELSE v(s).

For α = mv(2), we obtain a squaring function, which is not bijective. Indeed, from v(do(α, s)) = 9, one cannot
determine whether v(s) was -3 or 3, and the fluent is not invertible.

Example 18. Consider this successor state axiom for compound interest, where v denotes the accumulated value, rate
denotes the annual interest rate, and lapse(z) denotes the number of years the interest was allowed to accumulate:

v(do(a, s)) = IF ∃z(a = lapse(z)) ∧ relief (s) = 0
THEN v(s) · (1 + rate(s))z ELSE v(s).

Suppose further:
rate(do(a, s)) = IF ∃z(a = change(z)) THEN z + rate(s) ELSE rate(s).

relief (do(a, s)) = IF a = toggle THEN 1 − relief (s) ELSE relief (s).

Here, the interest rate influences the accumulated value over the lapsed time, and relief being true stops the
accumulation of interest. This theory is invertible, and Hv(a) is given by

Hv(a) = IF ∃z(a = lapse(z)) ∧ relief = 0
THEN v/(1 + rate)z ELSE v.

That is, because lapse(z) does not affect relief and rate, we simply invert the successor state axiom for v and relativize
everything to do(a, s). If (say) the action lapse(z) also affected rate, by the ordering in (i), we would first obtain the
H-expression for rate and use it in the H-expression for v.
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Note that the bijection property does not prevent us from using non-bijective functions, such as squares, in the succes-
sor state axiom of v, provided that these only apply to the other fluents. (The remaining fluents essentially behave as
constants at any given situation.) In our experience, many commonly occurring successor state axioms are invertible.

Before concluding our development of invertible theories, let us reflect on the sufficiency conditions (i), (ii) and
(iii). It should be clear that (iii), in fact, is also a necessary condition.

Theorem 19. If a fluent is invertible then (iii) must hold.

Proof: Suppose f is invertible but (iii) does not hold. This means that the mapping from the value of f (s) to the
value of f (do(a, s)) given by E f (a) is not bijective. However, a function is invertible iff it is a bijection [13]. In our
context, this implies that the value of f (s) cannot be uniquely determined from the value of f (do(a, s)). Thus, there
cannot be an expression H f (a) such thatD |= f (s) = H f (a)[do(a, s)]. Contradiction.

What about the necessity of (i) and (ii)? The main reason we insisted on these conditions in the first place is
because obtaining the value of f (s) from f (do(a, s)) becomes straightforward by using the fluent values at the start
of the order. To see why dropping these conditions makes the setting challenging, suppose f and g are the only two
fluents in a basic action theory, act is the only action, and suppose we have the following successor state axioms:

f (do(a, s)) = IF (a = act)
THEN expr1( f (s), g(s)) ELSE f (s).

g(do(a, s)) = IF (a = act)
THEN expr2( f (s), g(s)) ELSE g(s).

Here, expri could denote sums or products, or any other 2-ary bijective function. Suppose we are now given the values
of f (do(a, s)) and g(do(a, s)), and as motivated earlier, we are to recover the values of f (s) and g(s). To obtain the
value of f (s), then, we would need the value of f (do(a, s)), which is given, but also the value of g(s), which has to
be obtained. To obtain the value of g(s), we would need the value of g(do(a, s)), which is given, but also the value of
f (s). In other words, we are given a system of equations:

x′ = expr1(x, y)
y′ = expr2(x, y)

where the values of {x′, y′} are known and denote the values of { f (do(a, s)), g(do(a, s))} respectively, and we are to
solve for {x, y} that denote the values of { f (s), g(s)} respectively. In many cases, such systems can, of course, be
solved; for example, if x′ = x + y and y′ = y − x, then x = x′ − (y′ + x) = x′ − y′ − x, which means 2x = x′ − y′.
Once we obtain the value of x, we can obtain the value of y analogously. In general, however, solving such a system
of equations may not always be possible, at least in an exact manner.

Thus, (i) and (ii) are not necessary in order to obtain H-expressions, but simplify the treatment considerably since
we only need to invert the function expressed in E f (a), and obtain the values of the fluents according to the order. It
would be interesting to see whether for the basic action theories considered in the literature, even if (i) and (ii) do not
hold, H f (a) can be obtained in an exact manner making (iii) both sufficient and necessary for this class of theories.

7.2. Classical Progression
We now are prepared for a definition of progression that applies to any invertible basic action theory. Note that

the definition of invertibility imposes no constraint onD0. So the definition in this section is general in that the p may
appear in D0 in an unrestricted way, such as in (7). Given such a theory D0 ∪ Σ and a ground action α, we define a
transformationD′0 such thatD′0 ∪ Σ agrees withD0 ∪ Σ on the future of α. Then, in the next section, we will consider
howD′0 grows as a result of this progression.

To start with, let us first consider the simpler case of progression for aD0 that does not mention the p fluent (and
the quantification over initial situations that comes with it), and so where D0 is uniform in S0. In this case, because
we are assuming a finite set of nullary fluents, any basic action theory can be shown to be local-effect [48], where
progression is first-order definable. The new theory is computed by appealing to the notion of forgetting [46]. If the
basic action theory is invertible, however, the progression can also be defined in another way. LetD′0 beD0 but with
any f (S0) term in it replaced by H f (α)[S0].
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Theorem 20. Let D0 ∪ Σ be any invertible basic action theory not mentioning p and α any ground action. Then for
any L-formula φ rooted in now

D0 ∪ Σ |= φ[do(α, S0)] iff D′0 ∪ Σ |= φ[S0].

The proof for this result is the first part of the proof for the below theorem.14

Example 21. Consider (17), and the Hv(a) from Example 15. SupposeD0 = {v(S0) > 10}. Then:

D′0 = (Hv(mv(3))[S0]) > 10
= (IF ∃z(mv(z) = mv(3))

THEN v(S0) − z ELSE v(S0)) > 10
= (v(S0) − 3 > 10)
= (v(S0) > 13).

Therefore, as expected, the progression of v(S0) > 10 wrt a noise-free motion of 3 units is v(S0) > 13. (The unique
name axiom and arithmetic are used in the simplification.)

7.3. Progressing Degrees of Belief
There are two main complications when progressing beliefs wrt noisy sensors and actions. First, the p fluent will

have to take the likelihood of the action α into account. Second, D0 need not be uniform in S0, since p typically
requires quantification over initial situations (as in (6), for example). This leads to the following definition:

Definition 22. Let D0 ∪ Σ be an invertible basic action theory and α be a ground action of the form A(~t) where ~t is
uniform in now.15 Then Pro(D0, α) is defined asD0 with the following substitutions:

• p(ι, S0) is replaced by
p(ι, S0)

ErrA(~t )[ι]
;

• every other fluent term f (u) is replaced by H f (α)[u].

Here, ErrA(~x ) refers to the RHSof the likelihood axiom for A(~x).
The main result of this paper is the correctness of this definition of progression:

Theorem 23. Under the conditions of the definition above, letD′0 = Pro(D0, α). Suppose thatD0 |= (ErrA(~t) , 0)[S0].
Then for any L-formula φ rooted in now,

D0 ∪ Σ |= φ[do(α, S0)] iff D′0 ∪ Σ |= φ[S0].

Proof: Following [47], to show that D′0 ∪ Σ is the progression of D0 ∪ Σ, it suffices to show that for any model
M, M is a model of D′0 ∪ Σ iff there is a model M′ of D0 ∪ Σ such that for any φ rooted in now, M |= φ[S0] iff
M′ |= φ[do(α, S0)].

For any M, let M′ be exactly like M except for the interpretation of f1, . . . , fk, p initially, which is specified
separately below. That is, M and M′ have the same domains for actions and objects, interpret situation-independent
symbols exactly, and also interpret do,Poss exactly. It then follows that it suffices to show that for all fluents f
(including p), M |= f (S0) = n iff M′ |= f (do(α, S0)) = n. If that were true, by the successor state axioms and Σ, the
more general case of formulas φ rooted in now would follow by an induction argument.

14We deviate from the formulation in [47] in one minor way: the classical account defines the progression of D0 to be a set of sentences that
are uniform in do(α, S0), and require that D0 and D′0 agree on all formulas about do(α, S0) and its future situations. (Note that φ in the theorem is
permitted to be rooted in now, which means it can capture future situations by being of the form ψ[do([α1, . . . , αn], now)].) So, the theorem would
instead be stated as saying thatD0 ∪ Σ |= φ[do(α, S0)] iffD′0 ∪ Σ |= φ[do(α, S0)]. We are choosing to instead formulateD′0 as being uniform in S0,
as we think its somewhat simpler to read when we invert the successor state axioms.

The original variant is easily obtained by simply replacing all occurrences of S0 inD′0 by do(α, S0). Replacing the situation terms in a progressed
theory is not uncommon; see, for example, the lifting of predicate symbols in [48].

15In the most common case (like noise-free or sensing actions), the arguments to the action would simply be a vector of constants.
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The proof is fairly easy to establish because by construction alone, we have a precise space of initial situations
via (P3), and the bijective mapping from the value of f (s) to the value of f (do(α, s)) via invertible theories. We
first treat the regular fluents f1, . . . , fk and treat p soon after. Suppose the values of the regular fluents at S M

0 is
〈n1, . . . , nk〉 ∈ Rk. Then let the value for the fluent fi at S M′

0 be the inverted value, which is given as: M′ |= fi(S0) =

(H fi (α)[do(α, S0)]) ( f1(do(α, S0)), . . . , fk(do(α, S0))/n1, . . . , nk), that is, the fluent terms in (H fi (α)[do(α, S0)]) are re-
placed by n1, . . . , nk, which is supposed to be the the values of fluents at do(α, S0) as per S M

0 . Because of invertibility,
it immediately follows that for every fi, M |= fi(S0) = n iff M′ |= fi(do(α, S0)) = n.

The case for p remains. Recall that M and M′ agree on the space of initial situations. Following the construction
for S0 above, it should be clear that for any initial situation sM , there is an initial situation sM′ such that for every fi,
M |= f (s) = n iff M′ |= f (do(α, s)) = n. We now show that the p-value of sM is exactly the same as the p-value of
sM′ . It then follows that for any situation suppressed formula φ, M |= Bel(φ, S0) = n iff M′ |= Bel(φ, do(α, S0)) = n.

To show the mapping of p values, consider that the general form is that p(ι, S0) = θ(ι) is inD0, and by construction,
D′0 includes p(ι, S0) = θ[ι] × ErrA(~t )[ι]. Then for the initial situation sM , its p-value is given as: M |= p(s, S0) = (θ ×
ErrA(~t )) ( f1(s), . . . , fk(s)/n1, . . . , nk), that is, the expressions have the the fluents replaced by their values 〈n1, . . . , nk〉 ∈

Rk at sM . Now sM′ obtains a p-value: M′ |= p(s, S0) = θ ( f1(s), . . . , fk(s)/n′1, . . . , n
′
k), where 〈n′1, . . . , n

′
k〉 ∈ R

k are the
values of the fluents at sM′ . Clearly by the successor state axiom for p, the p-value of doM′ (αM′ , sM′ ) is the same as
the p-value of sM .

This theorem gives us the desired property for Bel (which is defined in terms of p) as a corollary:

Corollary 24. SupposeD0,Σ,D′0, φ, and α are as above. Then for all real numbers n:

D0 ∪ Σ |= Bel(φ, do(α, S0)) = n
iff D′0 ∪ Σ |= Bel(φ, S0) = n.

Thus the degree of belief in φ after a physical or sensing action is equal to the initial belief in φ in the progressed
theory.

We now present some examples, considering, in turn, noise-free actions, noisy sensing and finally noisy actions.

Example 25.Let us consider an action theory with a vertical action mv(z), a sensing action sonar(z) and two horizontal
actions: towards moves the robot halfway towards the wall and away moves the robot halfway away from the wall.
Formally, letD0 ∪ Σ be an action theory whereD0 contains just (6), and Σ includes

• foundational axioms and (P1)-(P3) as usual;

• a l-axiom for sonar(z), namely (13);

• l-axioms for the other actions, which are noise-free, and so these simply equal 1;

• a successor state axiom for v, namely (17);

• the following successor state axiom for h:

h(do(a, s)) =

IF a = away THEN 3/2 · h(s)
ELSE IF a = towards THEN 1/2 · h(s)
ELSE h(s).

We noted that (1) does not satisfy our invertibility property. This variant, however, is invertible. The H-expression for
v was derived in Example 15. The H-expression for h is:

Hh(a) =

IF a = away THEN 2/3 · h
ELSE IF a = towards THEN 2 · h
ELSE h.

We now consider the progression ofD0 wrt the action away. First, the instantiated H-expressions would simplify to:
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• Hh(away) = 2/3 · h;

• Hv(away) = v.

Next, since away is noise-free, we have Erraway = 1. Putting this together, we obtainD′0 = Pro(D0, away) as:

p(s, S0) = U(2/3 · h; 2, 12) × N(v; 0, 1) [s]
= U(h; 3, 18) × N(v; 0, 1) [s]

That is, the new p is one where h is uniformly distributed on [3, 18] and v is independently drawn from a standard
normal distribution (as before). This leads to a shorter and wider density function, as depicted in Figure 4. Here are
three simple properties to contrast the original vs. the progressed:

• D0 ∪ Σ |= Bel(h ≥ 9, S0) = .3.

The Bel term expands as:

1
γ

∫
x

∫
y

IF ∃ι(h = x ∧ v = y ∧ h ≥ 9)[ι]
THEN U(h; 2, 12) × N(v; 0, 1)[ι] ELSE 0

which simplifies to the integration of a density function:

1
γ

∫
x

∫
y

.1 × N(y; 0, 1) if x ∈ [2, 12], x ≥ 9
0 otherwise

=
1
γ

∫
x

∫
y


.1 × N(y; 0, 1) if x ∈ [9, 12]

0 otherwise
= .3.

Only those situations where h ∈ [2, 12] initially are given non-zero p values and by the formula in the Bel-term,
only those where h ≥ 9 are to be considered.

• D0 ∪ Σ |= Bel(h ≥ 9, do(away, S0)) = .6.

For any initial situation ι, h[do(away, ι)] ≥ 9 only when h[ι] ≥ 6, which is given an initial belief of .6.

• D′0 ∪ Σ |= Bel(h ≥ 9, S0) = .6.

Basically, Bel simplifies to an expression of the form:

1
γ

∫
x

∫
y

1/15 · N(y; 0, 1) if x ∈ [3, 18], x ≥ 9
0 otherwise

giving us .6.

Example 26. Let D0 ∪ Σ be exactly as above, and consider its progression wrt towards. It is easy to verify that for
instantiated H-expressions we get:

• Hh(towards) = 2 · h;

• Hv(towards) = v;

Here too, because towards is noise-free, Errtowards is simply 1, which is to say the D′0 = Pro(D0, towards) is defined
as:

p(s, S0) = U(2 × h; 2, 12) × N(v; 0, 1) [s]
= U(h; 1, 6) × N(v; 0, 1) [s].

The new distribution on h is narrower and taller, as shown in Figure 5. Here we might contrastD0 andD′0 as follows:
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Figure 4: Belief change about h: initially (solid magenta) and after moving away (dotted blue).
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Figure 5: Belief change about h: initially (solid magenta) and moving towards the wall (dotted blue).

• D0 ∪ Σ |= Bel(h ∈ [2, 3], S0) = .1.

• D′0 ∪ Σ |= Bel(h ∈ [2, 3], S0) = .2.

Example 27. Let D0 ∪ Σ be as in the previous examples. Consider its progression wrt the action sonar(5). Sensing
actions do not affect fluents, so for H-expressions we have:

• Hh(sonar(5)) = h;

• Hv(sonar(5)) = v.

Here sonar(z) is noisy, and we have Errsonar(5) = N(5; h, 4). This means that the progressionD′0 = Pro(D0, sonar(5))
is

p(ι, S0)
N(5; h, 4)[ι]

= U(h; 2, 12) × N(v; 0, 1)[ι],

which simplifies to the following:

p(ι, S0) = U(h; 2, 12) × N(v; 0, 1) × N(5; h, 4) [ι].

As can be noted in Figure 6, the robot’s belief about h’s true value around 5 has sharpened. Consider, for example,
that:
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• D0 ∪ Σ |= Bel(h ≤ 9, S0) = .7.

• D′0 ∪ Σ |= Bel(h ≤ 9, S0) ≈ .97.

If we were to progressD′0 further wrt a second sensing action, say sonar(5.9), we would obtain the following:

p(ι, S0) =

U(h; 2, 12) × N(v; 0, 1) × N(5; h, 4) × N(5.9; h, 4) [ι].

As can be seen in Figure 6, the robot’s belief about h would sharpen significantly after this second sensing action. If
we letD′′0 = Pro(D′0, sonar(5.9)) then:

• D′′0 ∪ Σ |= Bel(h ≤ 9, S0) ≈ .99.

0 5 10 15 20
 

 

 

 

 

 

 

Figure 6: Belief change about h: initially (solid magenta), after sensing 5 (red circles), and after sensing twice (blue squares).

Example 28. LetD0 be (6). Let Σ be the union of:

• (P1)-(P3) and domain-independent foundational axioms;

• a successor state axiom for h as above;

• a noisy move action mv with the following l-axiom:

l(mv(x, y), s) = N(y; x, 2)

• a successor state axiom for v using this noisy move:

v(do(a, s)) = IF ∃x, y(a = mv(x, y))
THEN v(s) + y ELSE v(s).

(Recall that for a noisy move mv(x, y), x is the intended motion and y is the actual motion.) This is inverted
using the same idea as in Example 15.

Consider the progression ofD0∪Σ wrt mv(2, 3),where, of course, the agent does not get to observe the latter argument,
and so corresponds to the action mv(2, u). The simplified H-expressions are as follows:

• Hh(mv(2, u)) = h;

• Hv(mv(2, u)) = v − u.
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By definition, occurrences of v in D0 are to be replaced by Hv(mv(2, u)). Also, Errmv(2, u) = N(u; 2, 2). Therefore,
D′0 = Pro(D0,mv(2, u)) is defined to be(

p(ι, S0)
N(u; 2, 2)[ι]

= U(h; 2, 12) × N(v − u; 0, 1)[ι]
)

This simplifies to:
p(ι, S0) = U(h; 2, 12) × N(v; u, 1) × N(u; 2, 2) [ι].

Thus the noisy action has had the effect that the belief about the position has shifted by an amount u drawn from a
normal distribution centered around 2. This leads to a shifted and wider curve seen in Figure 7. As expected, the agent
is considerably less confident about its position after a noisy move. Here, for example, are the degrees of belief about
being located within 1 unit of the best estimate (that is, the mean):

• D0 ∪ Σ |= Bel(v ∈ [−1, 1], S0) ≈ .68.

• D′0 ∪ Σ |= Bel(v ∈ [1, 3], S0) ≈ .34.

Basically, Bel expands to an expression of the form

1
γ

∫
x,y,z

.1N(y; z, 1) · N(z; 2, 2) if x ∈ [2, 12], y ∈ [1, 3]
0 otherwise

where γ is ∫
x,y,z

.1N(y; z, 1) · N(z; 2, 2) if x ∈ [2, 12]
0 otherwise

leading to .34.
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Figure 7: Belief change about v: initially (solid magenta) and after a noisy move of 2 units (blue squares).

8. Computability of Progression

In the general case [47], the computability of progression is a major concern, as it requires second-order logic. We
are treating a special case here, and because it is defined over simple syntactic transformations, we have the following
result immediately:

Theorem 29. SupposeD = D0 ∪ Σ is any invertible basic action theory. After the iterative progression ofD0 ∪ Σ wrt
a sequence δ, the size of the new initial theory is O(|D| × |δ|).
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Proof: The result of progression is a theory D′0 which is essentially obtained by means of H-expressions applied
toD0: that is, each fluent appearing inD0 is replaced by its corresponding H-expression. Note that in the worst-case,
H-expressions are of the same size as the successor state axioms, that is, the size is |D − D0|. (For example, imagine
a basic action theory with a single fluent h, other than p, and a trivial precondition axiom; then the size of D −D0 is
determined by the successor state axiom for h. Since the H-expression for h inverts the successor state axiom, its size
is also |D − D0|.) The progressed initial theory is defined as D0 but with syntactic substitutions for the fluents based
on the H-expressions and the likelihood axioms. Thus, after one action, in the worst case, the size of the initial theory
is the size of D0, plus the size of the substitutions (|D − D0|); in other words, the size is |D|. Consequently, after |δ|
actions, the size is |D| × |δ|.

Therefore, progression is computable. But for realistic robotic applications, even this may not be enough, especially
over millions of actions. Consider, for example, that to calculate a degree of belief it will be necessary to integrate the
numerical expression for p. What we turn to in this section is a special case that would guarantee that over any length
of action sequences, the size of the progressed theory does not change beyond a constant factor. It will use the notion
of context-completeness [49] and a few simplification rules.

Definition 30. Suppose F ⊆ { f1, . . . , fk} is any set of fluents, andD0 ∪ Σ is any invertible basic action theory. We say
thatD0 is complete wrt F if for any φ ∈ LF , eitherD0 |= φ orD0 |= ¬φ, where LF is the sublanguage of L restricted
to the fluents in F.

Definition 31. An invertible basic action theoryD0 ∪ Σ is said to be context-complete iff

• for every fluent f ,D0 is complete wrt every fluent other than f appearing in the successor state axiom of f ;

• D0 is complete wrt every fluent appearing in a conditional expression in the likelihood axioms.

That is, there is sufficient information in D0 to simplify all the conditionals appearing in the context formulas of the
successor state axioms and the likelihood axioms.

STRIPS actions are trivially context-complete, and so are Reiter’s context-free successor state axioms where only
rigid symbols appear in the RHS[58]. In Example 18, if D0 is complete wrt the fluents rate and relief, then the
theory would be context-complete. Note that D0 does not need to be complete wrt the fluent v in that example, and
this is precisely why they are interesting. Indeed, both (1) and (17) are also context-complete because, by definition,
E f may mention f , and (say) use its previous value.16 The reader may further verify that all the density change
examples developed in the paper are context-complete. Since we are interested in iterated progression, we say that the
progression of D over an action sequence δ = [a1, . . . , ak] is context-complete iff the iterated progression is context-
complete: that is, D0 ∪ Σ is context-complete, Pro(D0, a1) ∪ Σ is context-complete, Pro(Pro(D0, a1), a2) ∪ Σ, and so
on.

Putting it all together, in contrast to our previous theorem, we would have a progressed theory that in linear in the
size of the initial theoryD0:17

Theorem 32. Suppose D0 ∪ Σ is any invertible basic action theory that is also context-complete. After the iterative
progression ofD0 ∪ Σ wrt a sequence δ, the size of the new initial theory is O(|D0| + |δ|).

Proof: As a result of context-completeness, the body of the successor state axiom for a fluent f would simplify
to an expression involving only f (and one additional free variable resulting from noisy actions). As a consequence,
H-expressions simplify to expressions of the form:

f (s) = θ( f (do(a, s)))

where θ(x) is an L-term, possibly an arithmetic expression, with a single free variable x in the case of a noisy action.
Thus, for all fluents f in D0 other than p, the expressions are of the same length, with the addition of some numeric
terms and some free variables yielding the form f ◦1 n ◦2 y, where ◦i ∈ {+,−,×, /} and n is a number.

16Strictly speaking, our notion of context-completeness is inspired by, but not the same as the one in [49]. This pertains to the clarification just
made: we allow successor state axioms to use the fluent’s previous value.

17A previous version of this theorem [8] bounded the worst case by |D0 | × |δ|; the below result shows that it is easily tightened.
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The p fluent is affected by the likelihood functions. But analogously, if A(~t) is any ground action, then,

ErrA(~t) = ω(~t, ~f ).

where ω(~x, ~y) is an L-term, possibly an arithmetic expression, with free variables ~x∪~y. Such a term is multiplied with
p. Thus, the growth in the size of the theory after iterated progression is |δ|.

This can make a substantial difference in the size of the expression for p. A special case of this theorem is immediately
applicable to conjugate distributions [16, 12], previously considered in Section 5. Indeed, such distributions admit an
effective propagation model, as seen in Kalman filtering. We show a simple example where analogous expressions
are obtained by our definition of progression:

Example 33. LetD0 ∪ Σ be as in Example 28. We noted its progression wrt mv(2, 3) includes:

p(ι, S0) = U(h; 2, 12) × N(v; z, 1) × N(z; 2, 2) [ι].

If we progress this sentence further wrt a second noisy action mv(3, 4), we would obtain:

p(ι, S0) = U(h; 2, 12) × N(v − u; y, 1) × N(y; 2, 2) × N(u; 3, 2) [ι].

This then simplifies to:

p(ι, S0) = U(h; 2, 12) × N(v; y + u, 1) × N(y; 2, 2) × N(u; 3, 2) [ι].

9. Related Work

To the best our knowledge, this work is the first to fully generalize classical first-order regression and progression
for degrees of belief, noisy acting and sensing. Below, we discuss related efforts in terms of the language, and
the individual techniques. We note that although we restricted L to nullary real-valued fluents, we suspect that
both regression and invertibility and its connection to progression may apply more generally. This is left for future
investigations.

At the outset, our results were based on a logical language for reasoning about action [58], and its extension to
probabilistic beliefs and noise by Bacchus, Halpern and Levesque [2]. Our own prior work further extended that
account to continuous distributions [6]. We refer interested readers to [10] for a comprehensive discussion on related
efforts on such languages, but summarize the main points below.

The unification of logic and probability has a long history in AI, going back to efforts such as [53]. The works
of Bacchus and Halpern [26, 1], in particular, provide the means to specify properties about the domain together
with probabilities about propositions; see [54] for a recent list on first-order accounts of probability. The interaction
between probability and knowledge was first discussed in [26]. The Bacchus, Halpern and Levesque scheme is closely
related to these efforts; see [2] for discussions.

From the perspective of dynamical systems, closest in spirit to our work here are knowledge representation lan-
guages for reasoning about action and knowledge, which we refer to as action logics. The situation calculus [51, 58],
which has been the sole focus of this paper, is one such language. There are others, of course, such as the event
calculus [39], dynamic logic [73, 74], the action language [30], or the fluent calculus [68]. Probabilistic planning
languages planning languages [77, 61, 40] are also related on this front. In [38], dynamic logic is extended for knowl-
edge, subjective probabilities and stochastic outcomes. Extending that framework, the notion of updating epistemic
states in the presence of announcements and nested beliefs has been studied more comprehensively in [71, 22, 23].
Treating continuous probabilities is also considered for that family of logics in [60].

Limited versions of probabilistic logics are very popular in mainstream AI and machine learning, in the form of
relational graphical models or similar [37, 31, 56, 24, 57, 66, 64, 52]. These give up the expressivity of the more
powerful languages above for the sake of decidability, or to explore issues such as tractable inference and learnability.
Naturally, the generality of our theorems also means we can adapt our results to less expressive initial knowledge
bases: in [9], for example, we implemented the regression operator as applicable to a unique joint distribution, such
as a Bayesian network.
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9.1. On Regression
In essence, regression in stochastic domains is addressing the problem of assimilating sensor and effector noise. In

standard probabilistic frameworks, perhaps the most popular model to treat sensor fusion is Kalman filtering [28, 69],
where priors and likelihoods are assumed to be Gaussian. We already pointed out some instances of Kalman filtering
in our example. Where we differ is that backward chaining is possible even when: (a) no assumptions about the
nature of distributions, nor about how distributions and dependencies change need to be made, (b) the framework is
embedded in a rich theory of actions, and (c) arbitrary forms of incomplete knowledge are allowed, including strict
uncertainty. Domain-specific dependencies, then, may be exploited as appropriate.

There is one other thread of related work, that of symbolic dynamic programming [15, 14]. (In that vein, algorithms
for partially observable Markov decision processes [35] are similar in spirit, their computation is based on expected
discount reward measures, and a factorized belief state that is approximated.) While regression is used in this literature
as well, the concerns are very different: they focus on policy generation, while ours is strictly about belief change.
Consequently, the regression in that literature is adapted from the regression for the non-epistemic situation calculus
[58]. Ours, on the other hand, continues in the tradition of the epistemic situation calculus [62] by extending those
intuitions to probabilistic belief and noisy sensing. In this regard, our account allows the modeler to explicitly reason
about beliefs in the language, which would prove useful in formalizing the achievability of plans [44], among other
issues.

Of course, as discussed earlier, the idea of regression is not new and lies at the heart of many planning systems [29].
For STRIPS actions, regression has at most linear complexity in the length of the action sequence [58]. For other
studies, see [72, 59]. Independently of our efforts, [36] also explore a regression operator for stochastic belief states.
They do not, however, consider any correctness formulation, and do not consider first-order logics of probability.

9.2. On Progression
Our work on progression builds on Lin and Reiter’s [47] account. Other advances on progression have been

made since then [48, 75], mainly by appealing to the notion of forgetting [46]. We were motivated by concerns in
stochastic domains, and this led to the notion of invertible theories. These theories allowed us to perform first-order
progression by inverting successor state axioms in a way that, as far as we know, has not been investigated before,
even in non-stochastic settings.

The progression of categorical knowledge against noise-free effectors and sensors is considered in [50, 41]. The
progression of discrete degrees of belief wrt context-completeness is considered in [4]. In the fluent calculus [67], a
dual form of successor state axioms is used, leading naturally to a form of progression. However, continuity is not
considered in any of these.

The form of progression considered here follows Lin and Reiter and differs from weaker forms including the one
proposed by Liu and Levesque [49], and the notion of logical filtering [63, 33], which is a form of (approximate)
progression.18 Interestingly, logical filtering is inspired by Kalman filters [69], although the precise connection is not
considered. In situation calculus terminology, Kalman filters and its variants are derived using strongly context-free
[58] noisy actions and sensors, with additive Gaussian noise, over normally distributed fluents. So they are a special
case of the more general account we developed.

10. Conclusions

Planning and robotic applications have to deal with numerous sources of complexity regarding action and change.
Along with efforts in related knowledge representation formalisms such as dynamic logic [73], the action language
[30] and the fluent calculus [68], Reiter’s [58] reconsideration of the situation calculus has proven enormously useful
for the design of logical agents, essentially paving the way for cognitive robotics [42].

In this work, we obtained new results on how to handle projection in the presence of probabilistic information,
both at the level of the knowledge base and at the level of actions. In particular, we generalized both regression and
progression.

18In [63, 33], the notion of a permuting action is introduced for computing their form of progression, which bears some similarity to invertible
fluents. However, as mentioned above, our work on continuity led itself to invertibility. Neither continuous uncertainty nor continuous noise is
considered in [63, 33].
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Our regression results are interesting because irrespective of the decompositions and factorizations that are justifi-
able initially, belief state evolution is known to invalidate these factorizations even over simple temporal phenomena.
We demonstrated regression in settings where actions affect priors in nonstandard ways, such as transforming a con-
tinuous distribution to a mixed one. In general, regression does not insist on (but allows) restrictions to actions, that
is, no assumptions need to be made about how actions affect variables and their dependencies over time. Moreover,
at the specification level, we do not assume (but allow) structurally constrained initial states.

Given the generality of our results, and the promising advances made in the area of relational probabilistic infer-
ence [18], we believe regression suggests natural ways to apply those developments with actions. This line of research
would allow us to address effective belief propagation for numerous planning problems that require both logical and
probabilistic representations. On another front, note that after applying the reductions, one may also use approx-
imate inference methods. Perhaps then, regression can serve as a computational framework to study approximate
belief propagation, on the one hand, and using approximate inference at the initial state after goal regression, on the
other. As discussed, [9] already implements the regression operator over any single probability distribution, including
factorized representations such as Bayesian networks, which is evaluated by sampling.

With regards to progression, Lin and Reiter developed their notion with long-lived agents in mind. However, their
account did not deal with probabilistic uncertainty nor with noise, as seen in real-world robotic applications. In the
work here, we consider semantically correct progression in the presence of continuity. By first identifying what we
called invertible basic action theories, we obtained a new way of computing progression. Under the additional restric-
tion of context-completeness, progression is very efficient. Most significantly, by working within a richer language,
we have obtained progression machinery that, to the best of our knowledge, has not been discussed elsewhere, and
goes beyond existing techniques. The unrestricted nature of the specification of the p fluent, for example, which we
inherit from [2], allows for agents whose beliefs are not determined by a unique distribution. There are two immediate
directions for future work on progression. First, just like regression was implemented in [9], it would be worthwhile
to investigate an implementation for progression. Second, the invertibility property was mainly sought to handle con-
tinuity, including the case where a continuous distribution transforms to a discrete one. If we restrict our attention to
discrete distributions, the natural question is whether one can obtain an account of progression in stochastic domains
that does not syntactically restrict the basic action theory.

Finally, building on both our results, developing an epistemic planner that leverages the ideas behind regression
and progression, as one would in classical planning, would make for very interesting future work. Extending such a
framework to multiple agents would also be an exciting future direction.
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