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Abstract

Finite-state controllers (FSCs), such as plans with loops, are powerful and compact representations of action selection
widely used in robotics, video games and logistics. There has been steady progress on synthesizing FSCs in determin-
istic environments, but the algorithmic machinery needed for lifting such techniques to stochastic environments is not
yet fully understood. While the derivation of FSCs has received some attention in the context of discounted expected
reward measures, they are often solved approximately and/or without correctness guarantees. In essence, that makes
it difficult to analyze fundamental concerns such as: do all paths terminate, and do the majority of paths reach a goal
state?

In this paper, we present new theoretical results on a generic technique for synthesizing FSCs in stochastic envi-
ronments, allowing for highly granular specifications on termination and goal satisfaction.

Keywords: Plan and program synthesis, Stochastic domains, Loops in plans and programs, Stochastic algorithms,
Planning in robotics

1. Introduction

Finite-state controllers (FSCs), such as plans with loops, are powerful and compact representations of action
selection widely used in robotics, video games and logistics. In AI, FSCs are much sought after for automated
planning paradigms such as generalized planning, as in Figure 1, where one attempts to synthesize a controller that
works in multiple initial states. Such controllers are usually hand-written by domain experts, which is problematic
when expert knowledge is either unavailable or unreliable. To that end, the automated synthesis of FSCs has received
considerable attention in recent years, e.g., [19, 7, 32, 30, 12, 33, 16]. Of course, FSCs synthesis is closely related
to program synthesis [19], and FSCs are frequently seen as program-like plans [20], and recent synthesis literature
involves an exciting exchange of technical insights between the two fields [32]; representative examples include the
use of program synthesis to infer high-level action types [31], and the use of partial order planning for imperative
program synthesis [15].

Naturally, from an algorithmic perspective, the two most immediate questions are: in which sense are controllers
correct, and how do we synthesize controllers that are provably correct? In classical deterministic settings, plan paths
can only be extended uniquely, so it suffices to show that there is a terminating path that reaches the goal state. Ideally,
then, what we seek is a procedure that is both sound (i.e., all synthesized controllers are correct) and complete (i.e., if
there is a plan, then the procedure finds it).

The compact nature of FSCs makes them particularly attractive for mobile robots [24], among other domains where
there is inherent stochasticity and actions are noisy. To a first approximation, in the presence of non-probabilistic non-
determinism, it is common practice to make assumptions, such as disallowing repeated configurations of (state, action)
pairs [27, 28]. However, in stochastic environments, that is almost always an unreasonable assumption. Consider a
robot attempting to grip an object: the first and second attempt may fail, but perhaps the third succeeds. Structurally,
the first two failures are identical: while a domain expert might find a way to distinguish the two states for the planner,

∗Corresponding author. Vaishak Belle was supported by a Royal Society University Research Fellowship.
Email addresses: laszlo.treszkai@gmail.com (Laszlo Treszkai), vaishak@ed.ac.uk (Vaishak Belle)

Preprint submitted to Elsevier December 17, 2019



A − − − B
q0 q1

A :→
− :→

B :←

− :←

A : stop

Figure 1: Left: A planning problem where the agent is initially in cell A, and the goal is to visit cell B and go back to cell A. At each state, possible
observations are A, B, or –. Right: A correct finite state controller for this problem. The circles are controller states, and an edge q o:a

−−→ q′ means
“do a when the observation is o in controller state q, and then switch to controller state q′.” The reader may observe that this controller works for
any number of states between A and B in the domain, e.g., for (A,−, B) as well as (A,−,−,−,−, B).

from a robustness viewpoint, of course, it is more desirable when algorithms operate without such assumptions. In
this regard, the algorithmic machinery needed for lifting FSC synthesis techniques to stochastic environments is not
yet fully understood.

More generally, we identify the following desiderata:

D1. The planner should cope with plan paths that do not terminate in a goal state;

D2. The planner should correctly account for how a looping history affects goal probabilities, distinguishing loops
that never terminate and loops that can be extended into goal histories; and

D3. The planner should recognize when a combination of loops never terminates, even if the loops by themselves
appear to be possibly terminating.

Implicit in these desiderata is the idea that the planner should leverage the likelihood of action outcomes, because
(a) these likelihoods are informative about which action outcomes are more likely than others, and (b) in the presence
of repeating configurations, probabilities allow for a natural tapering of the likelihood of paths.

In this paper, we present new theoretical results on a generic technique for synthesizing FSCs in stochastic envi-
ronments, by means of a probabilistic extension of AND-OR search. We provide a careful analysis of how to maintain
upper and lower bounds of the likelihoods of paths, so that one can naturally deal with tapering probabilities, arising
from repeating configurations. In particular, it allows us to plan for highly granular specifications, such as: generate
a FSC under the requirement that >80% of the paths terminate, and >60% of the paths reach the goal state. Most
significantly, we prove that our algorithm is both sound and complete.

2. Problem formalisation

Our contributions do not depend on the details of the formal language (e.g., [14]), and so we consider an abstract
framework [4].

Definition 1. An environment E is defined as a tuple 〈S,A,O,∆,Ω〉, whose elements are the following: S,A, O are
finite sets of states, actions, and observations; ∆ : S ×A → Π(S) is a stochastic state transition function, where Π(S)
denotes the set of probability distributions over S; and Ω : S → O is an observation function.

A planning problem is defined as an environment, an initial state, and a set of goal states:

Definition 2. A planning problem P is a triple 〈E, s0,G〉, where E is an environment with state space S, s0 ∈ S is the
initial state, and G ⊂ S is the set of goal states.

We represent loopy plans as follows [25]:

Definition 3. A finite state controller (FSC) C is defined by a tuple 〈Q, q0,O,A, γ, δ〉, where: Q = {q0, q1, . . . , qN−1} is
a finite set of controller states; q0 ∈ Q is the initial state of the controller; O &A are the sets of possible observations
& actions; γ : Q × O → (A ∪ {stop}) is a partial function called the labeling function; δ : Q × O → Q is a partial
function called the transition function.
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An FSC forms part of a system 〈E,C〉, usually for a planning problem 〈E, s0,G〉. Initially, at step t = 0, the
environment is in state s(0) = s0, and the FSC C is in controller state q(0) = q0, where the superscript denotes the
current step t. The controller makes an observation o(0) = Ω(s0), executes action a(0) = γ(q(0), o(0)), and transitions to
controller state q(1) = δ(q(0), o(0)). The environment transitions to state s(1) ∼ ∆(s(1)|s(0), a(0)). This process is repeated
until the special action stop is executed, when the state→observation→action→next-state cycle stops.

We call a pair of controller and environment state 〈q, s〉 a combined state of the system.

Notation. We denote the value of any x ∈ {s, q, o, a, p} at step t during the execution of a system by x(t). (The meaning
of p(t) is introduced in Definition 4.) A sequence is written as 〈x(t)〉

j
t=i := 〈x(i), x(i+1), . . . , x( j)〉. The subsequence of

h ≡ 〈x(t)〉0≤t≤n between indices i and j is denoted by h(i: j) := 〈x(i), x(i+1), . . . , x( j)〉, and the subsequence from an
index until the beginning or end of the sequence are denoted by h(i:) := h(i:n) and h(: j) := h(0: j), respectively. end(h)
refers to the last element of h. The concatenation of two compatible sequences is denoted by the · operator, e.g.,
h(i: j) · h( j:k) := h(i:k). (Sequences h1 and h2 are compatible if end(h1) = h(0)

2 .)

A history of a system from a given combined state is one possible sequence of states that it follows, not necessarily
until termination.

Definition 4. Let C = 〈Q, q0,O,A, γ, δ〉 be a finite state controller, and E an environment. For any integer T ≥ 0, a
history h = 〈 〈q(t), s(t)〉 〉Tt=0 ∈ (Q × S)T of a system 〈E,C〉 from the combined state 〈q(0), s(0)〉 is a finite sequence of
combined states such that p(t+1) = ∆(s(t+1) | s(t), a(t)) > 0, where a(t) := γ

(
q(t),Ω(s(t))

)
, and q(t+1) = δ

(
q(t),Ω(s(t))

)
, for

each 0 ≤ t < T . A history h(0:T ) for a planning problem 〈E, s0,G〉 is terminating if a(T ) = stop. A terminating history
for a planning problem 〈E, s0,G〉 is a goal history if C terminates in a goal state: a(T ) = stop and s(T ) ∈ G. Unless
otherwise noted, the first element of a history is 〈q0, s0〉.

Although the action a(t) is not included explicitly in the history, it can be obtained from 〈q(t), s(t)〉.
The likelihood ` of a history h is the probability that at each step t, the environment responds to the controller’s

action a(t) with the next state s(t+1). The likelihood can be defined inductively based on the length of the history:

`(h(:0)) := 1

`(h(:t+1)) := `(h(:t)) · ∆(s(t+1) | s(t), a(t)).

The most immediate question here is this: in which sense would we say that a controller is adequate for a planning
problem? In the absence of noise/nondeterminism, it is easy to show that the transition of combined states is deter-
ministic; put differently, histories can be extended uniquely [10, 12]. So it suffices to argue that there is a terminating
history and that it is a goal history. Of course, in the presence of nondeterminism, the extension of histories is no
longer unique (because of nondeterministic action outcomes), and in the presence of probabilities, it is also useful to
consider the likelihood of these extensions. We follow [2], where the notion of correctness from [14, 12] is extended
for noise, and define:

Definition 5. The total likelihood of termination of the system 〈E,C〉 on a planning problem P is denoted by LTER:

LTER :=
∑

{h | h is a terminating history}

`(h) (1)

Analogously, for goals, we define:

Definition 6. The total likelihood of goal termination of the system 〈E,C〉 on a planning problem P is denoted by
LGT:

LGT :=
∑

{h | h is a goal history}

`(h) (2)

Finally, we state the search problems we want to solve.

Problem 1. Given a planning problem P, an integer N, LGT? ∈ (0, 1), find a finite-state controller with at most N
states such that LGT ≥ LGT? for P.
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Figure 2: Test environments for probabilistic planning with loops. (1) No controller with LGT = 1 exists. (2) Difference between decaying and
non-decaying loops. (3) Decaying loops whose combination never terminates.

A more fine-grained version is where a minimum bound on LTER is also possible, defined below:

Problem 2. Given a planning problem P, an integer N, LTER? ∈ (0, 1), LGT? ∈ (0, 1), find a finite-state controller
with at most N states that is LTER ≥ LTER? and LGT ≥ LGT? for P.

We restrict our attention to solutions for Problem 1 for the most part, and turn to Problem 2 in the penultimate
technical section.

3. Synthesizing classical controllers

Existing strategies for synthesizing FSCs include the compilation of generalized planning problems to classical
ones [7], and the generalization of a sequential plan by abstraction [32]. A review of generalized planning is given by
Celorrio et al. [8].

From the perspective of an algorithmic schema, the generic technique of Hu and De Giacomo [12] is perhaps
the simplest to analyze, based on AND-OR search. Here, an environment virtually identical to ours is assumed, and
the transition relation is also nondeterministic (but non-probabilistic) via a state transition relation ∆ ⊆ S × A × S.
The pseudocode for the planner is in Algorithm 1. Initially, the algorithm starts with the empty controller Cε, at the
initial controller state q(0), with next states in S 0, the initial states of a generalized planning problem. The AND-
STEP function enumerates the outcomes of an action from a given combined state and history, and calls OR-STEP
to synthesize a controller that is correct for every outcome. The OR-STEP function enumerates the extensions of a
controller for the current controller state and observation, and thus selects a next action for the current observation,
and then calls AND-STEP to test for correctness recursively on the outcomes of the chosen action.1 The algorithm is
essentially a blind search in controller space, reverting to the last non-deterministic choice point when a branch fails.
The search space is trimmed in two ways. First, when a controller C is found to be not correct, every extension of C is
dropped as well. Second, if C ≺ C′ (meaning that every controller transition defined by C is the same in C′), then the
histories of C that were already explored are not tested again for C′. Most significantly, this exhaustive search results
in the algorithm being sound and complete [12].

4. Problems with loops in a noisy environment

We identified three desiderata in the introduction, which we justify below. For D1 (handling termination out of
a goal state), it is clear that there exist planning problems where even the optimal controller might not terminate on
every run or end up in a goal state on every terminating run. (Consider a problem with an unavoidable dead end state,
for example one where one outcome of a coin_flip action ends up in the goal, another outcome results in a dead
end state. See Fig. 2.1.)

D2 (handling looping histories) is the result of assigning probabilities to the different outcomes of an action. If a
history repeats a combined state at steps n and m, and `(h(0:n)) = `(h(0:m)), then the system will repeat the loop h(n:m)

indefinitely, and never terminate. On the other hand, if `(h(0:n)) > `(h(0:m)), and there exists a history h′ from h(n) such

1We provide the pseudocode of the algorithm to easily contrast it with our algorithm, but some details from [12] are omitted for the sake of
exposition.
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Algorithm 1 The AND-OR search algorithm for bounded finite state controllers [12, Fig. 4].

Require: P = 〈E, S 0,G〉, a generalized planning problem;
N, a bound on the number of controller states.

1: function ANDOR-SYNTH(P,N)
2: return AND-STEP

P,N(Cε, 0, S 0, 〈〉)
3: end function
4: function AND-STEP

P,N(C, q, S ′, h)
5: for all s′ ∈ S ′ do
6: C ← OR-STEP

P,N(C, q, s′, h)
7: end for
8: return C
9: end function

10: function OR-STEP
P,N(C, q, s, h)

11: if s ∈ G then
12: return C
13: else if 〈q, s〉 ∈ h then
14: fail
15: else if q

Ω(s)/a
−−−−−→ q′ ∈ C for some q′, a then

16: S ′ ← {s′ | 〈s, a, s′〉 ∈ ∆}

17: return AND-STEP
P,N(C′, q′, S ′, h · 〈q, s〉)

18: else
19: non-det. branch a ∈ A and q′ ∈ {0, . . . ,N − 1}

20: C′ ← C ∪ {q
Ω(s)/a
−−−−−→ q′}

21: S ′ ← {s′ | 〈s, a, s′〉 ∈ ∆}

22: return AND-STEP
P,N(C′, q′, S ′, h · 〈q, s〉)

23: end if
24: end function
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that h(0:n) · h′ terminates in G, then h(0:m) · h′ will also terminate in G. (See Fig. 2.2.) This means that in a stochastic
environment, tracking the likelihood of histories is essential.

For D3 (handling non-terminating loop combinations), in some environments no looping history has the property
that `(h(0:n)) = `(h(0:m)), and yet the system has no terminating runs. Fig. 2.3 illustrates a simple example, where
executing action a in s2 brings the environment either to s0 or s1, and from s0 the only possible action leads determin-
istically to s1 and from there back to s2.

It is not possible to analyze every controller synthesis framework in the literature to verify its adherence to these
desiderata, but, in the very least, the case of [12] is illustrative. Their procedure is correct for the dynamic environment
in which they operate, but as can be inferred from the above examples, it easily follows that the procedure fails to
meet the first two of the desiderata in stochastic environments.

Theorem 1. The algorithm by Hu and De Giacomo [12] returns with failure if every controller for the planning
problem has at least one history that cannot be extended into a goal history.

Theorem 2. The algorithm by Hu and De Giacomo [12] returns with failure if every controller for the problem has
at least one looping history.

Theorem 2 is true because line 13–14 of Algorithm 1 disallows plans that result in looping histories. As the
algorithm explores the whole AND-OR tree of the system, such plans need to be discarded, otherwise the algorithm
would be stuck exploring the infinite subtree resulting from the loop. Without assigning probabilities to histories, the
algorithm cannot tell how important any given loop would be.

More significantly, it is not possible to specify likelihood-based correctness criteria, which becomes essential for
handling domains where actions fail, for example.

5. Algorithm for loopy planning

We propose a search algorithm that provably meets all three of the desiderata. Similar to the algorithm of Hu
and De Giacomo [12], it also instantiates an AND-OR search in that it simulates the runs of a system, enumerates the
possible controller extensions whenever no action is yet defined for the current combined state, and when an action has
multiple outcomes, it does a depth-first search on the next states recursively. However, it fixes the shortcomings stated
in the previous section: instead of only allowing controllers that are correct on every run, it synthesizes controllers
whose correctness likelihood exceeds some likelihood given as input to the algorithm; and it is capable of handling
looping histories. As it is a probabilistic variant of the AND-OR search, we name it PANDOR.

5.1. Allowing less than perfect controllers

The basic idea behind our planner is that it maintains an upper and lower bound for the LGT of the current
controller, based on the histories simulated thus far. Whenever a failing run is encountered, the upper bound is
decreased by the likelihood of this run; similarly, a goal run increases the lower bound on LGT. When the lower
bound exceeds the desired correctness likelihood (hereafter denoted by LGT?), the current controller is guaranteed
to be “good enough”, and the algorithm returns with success. When the upper bound is lower than LGT?, none of
the extensions of the controller is sufficiently good, and we revert the program state to the point of the last non-
deterministic choice point. In the simplest variant of PANDOR, any run with repeated combined states is counted
as a failed run, thus it meets D1 but not D2. (It handles out-of-goal termination but is too conservative with looping
histories.) This property leads to an underestimation of the lower and upper bounds on LGT, making the search sound
but incomplete.

While the planner of [12] declared a controller and all of its extensions insufficiently good when it had a single
failing run, we relax this condition. Now a controller is insufficiently good when the total likelihood of all of its failing
runs exceeds 1 − LGT?; this results in the same behavior as that of its predecessor when LGT? = 1.
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Algorithm 2 The PANDOR algorithm, which synthesizes finite state controllers with looping histories.
Require: P = 〈E, s0,G〉, a planning problem;

N, a bound on the number of controller states;
LGT?: the desired minimum LGT.

1: function PANDOR-SYNTH(P,N)
2: (global) α← 〈〉
3: return AND-STEPP,N(Cε, 0, {〈s0, 1.0〉}, 〈〉)
4: end function
5: function AND-STEPP,N(C, q, SP′, h(0:n))
6: α(n+1)

x ← 0, for x ∈ {goal, fail, noter}
7: α(n+1,:)

loop ← 0; α(:,n+1)
loop ← 0

8: for all 〈s′, p′〉 ∈ SP′ do
9: C ← OR-STEPP,N(C, q, s′, p′, h)

10: λ← CALCLAMBDA(h,α)
11: if λgoal ≥ LGT? then
12: return C
13: else if 1 − λfail − λnoter < LGT? then
14: fail this non-deterministic branch
15: end if
16: end for
17: α← CUMULATEALPHA(h,α)
18: return C
19: end function
20: function OR-STEPP,N(C, q, s, p, h(0:n))
21: if s = swin then
22: α(n+1)

goal ← α(n+1)
goal + p

23: return C
24: else if s = sfail then
25: α(n+1)

fail ← α(n+1)
fail + p

26: return C
27: else if q(k) = q and s(k) = s for some k then
28: if p = 1 and p(i) = 1 for all k + 1 ≤ i ≤ n then
29: α(n+1)

noter ← 1
30: return C
31: else
32: α(k,n)

loop ← α(k,n)
loop + p

33: return C
34: end if
35: else if q

Ω(s)/a
−−−−−→ q′ ∈ C for some a, q′ then

36: SP′ ← NEXTSTATESP(s, a)
37: return AND-STEPP,N(C′, q′, SP′, h · 〈q, s, p〉)
38: else
39: non-det. branch a ∈ A and q′ ∈ {0, . . . ,N − 1}:

40: C′ ← C ∪ {q
Ω(s)/a
−−−−−→ q′}

41: SP′ ← NEXTSTATESP(s, a)
42: return AND-STEPP,N(C′, q′, SP′, h · 〈q, s, p〉)
43: end if
44: end function
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Algorithm 3 Helper functions used by PANDOR.

45: function CUMULATEALPHA(h(0:n),α)
46: for all x ∈ {goal, fail, noter} do
47: α(n)

x ← α(n)
x + p(n)α(n+1)

x /(1 − α(n,n)
loop )

48: end for
49: for k ← 0 . . . n − 1 do
50: α(k,n−1)

loop ← α(k,n−1)
loop + p(n)α(k,n)

loop/(1 − α
(n,n)
loop )

51: α(k,n)
loop ← 0

52: end for
53: α(n,n)

loop ← 0
54: return α
55: end function

56: function NEXTSTATESP(s, a)
57: if a = stop and s ∈ G then
58: return {〈swin, 1.0〉}
59: else if a = stop and s < G then
60: return {〈sfail, 1.0〉}
61: else
62: return {〈s′, p′〉 | ∆(s′ | s, a) = p′ > 0}
63: end if
64: end function

65: function CALCLAMBDA(h(0:n),α)
66: λx ← α(n+1)

x , for x ∈ {goal, fail, noter}
67: λ(0:n)

loop ← [0, 0, . . . , 0]
68: for k ← n . . . 0 do
69: λ(k)

loop ← α(k,n)
loop

70: for m← n − 1 . . . k do
71: λ(k)

loop ← α(k,m)
loop + p(m+1)/

(
1 − λ(m+1)

loop
)
· λ(k)

loop
72: end for
73: if λ(k)

loop + λnoter ≈ 1 then
74: λ(k)

loop ← 0

75: α(k:,k:)
loop ← 0

76: α(k)
noter ← α(k)

noter + p(k)

77: for all x ∈ {goal, fail, noter} do
78: λx ← α(k)

x
79: end for
80: else
81: for all x ∈ {goal, fail, noter} do
82: λx ← α(k)

x + p(k)/
(
1 − λ(k)

loop
)
· λx

83: end for
84: end if
85: end for
86: return 〈λgoal, λfail, λnoter〉

87: end function
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5.2. Correctly counting looping histories
In order to account for looping histories, we draw on the following insight. Suppose that for a history h(0:k), there

is a history hloop from h(k) with end(hloop) = h(k), and another history hgoal from h(k) that terminates in a goal state. A
system with an FSC has the Markov property such that both the next action of the controller and the next state of the
environment are defined by the current combined state. As a result, h · hgoal, h · hloop · hgoal, h · hloop · hloop · hgoal and
so on are all valid goal histories, where the one with m repetitions of hloop has likelihood `(h)

(
`(hloop)

)m
`(hgoal). These

likelihoods form a geometric progression, whose sum for all m ≥ 0 is `(h)`(hgoal)/
(
1− `(hloop)

)
. (The existence of two

distinct histories from h(k), namely hgoal and hloop, guarantees that `(hloop) < 1.) In the following, we describe how to
utilize this argument.

We said that PANDOR enumerates the histories of FSCs; let h(0:n)
curr be the currently simulated history at some point

during execution. Now we construct the set of all goal histories from pairwise disjoint sets of histories, one set for
each 0 ≤ k ≤ n.

Denote by Hk
loop the set of histories hloop from h(k)

curr with the following properties:

L1. h(0)
loop = h(k)

curr

L2. end(hloop) = h(k)
curr

L3. apart from its first and last element, hloop doesn’t contain h(k)
curr, and

L4. no element of hloop is equal to h(i)
curr for any i < k.

Furthermore, let Hk
goal+ denote the set of histories hgoal from h(k−1)

curr with the following properties:

W1. h(0)
goal = h(k−1)

curr

W2. send ∈ G and γ
(
qend,Ω(send)

)
= stop (where 〈send, qend〉 ≡ end(hgoal))

W3. apart from its first element, hgoal doesn’t contain h(k−1)
curr

W4. no element of hgoal is equal to h(i)
curr for any i < k − 1.

Finally, Hk
goal consists of histories hgoal that fulfill W1–W4 and also W5:

W5. h(1)
goal , h(k)

curr.

Condition W2 states that hgoal is a goal history. The other conditions collectively ensure that if h? is a goal history
from h(k−1) such that h? (1:) doesn’t repeat any element of h(:k−1), then it is either W1–W5 for k, or it can be uniquely
pieced together by elements of Hk

loop and Hk+1
goal.

Lemma 1. If h? ∈ (Hk
goal+ − Hk

goal), i.e., h? satisfies W1–W4 but not W5, then there is a unique m ≥ 0 such that for
some hloop,i ∈ Hk

loop for all 1 ≤ i ≤ m and some hgoal ∈ Hk+1
goal+, we have:

h? = h(k−1:k)
curr · hloop,1 · . . . · hloop,m · hgoal. (3)

Let α̃(k)
goal and λ̃(k)

loop denote the sum of the likelihood of the elements of H(k)
goal and H(k)

loop.

α̃(k)
goal =

∑
hgoal∈H(k)

goal

`(hgoal) (4)

λ̃(k)
loop =

∑
hloop∈H(k)

loop

`(hloop) (5)

Notation. α̃(i,k)
loop and α̃(k+1)

goal denote the probability of the system looping back to h(i)
curr or reaching a goal state from h(k)

curr

without following the current history along h(k+1)
curr . λ̃(k)

loop and λ̃(k+1)
goal denote the probability of the system looping back

to h(i)
curr or reaching a goal state from h(k)

curr, possibly while following the current history along h(k+1)
curr , or h(k+1)

curr and h(k+2)
curr ,

etc.

9



. . .
p(2)

c
X

p(2)
bp(1)

b
. . .

p(3)
c

Xp(3)
b

. . .p(3)
a

p(2)
ap(1)

ap(0)

Figure 3: An example AND-OR tree corresponding to the execution of PANDOR, with the root at the left. Numbers on the edges are the transition
probabilities; empty circles: OR nodes (a combined state of the system); filled black circles: AND nodes (some action made, with the outcome yet
uncertain); checkmark: system terminates in a goal state; a dashed arrow indicates that the relevant states are equal in a looping history, with an
infinitely repeating tree below. When all nodes are explored and the double circle is the current node in the OR-step (thus hcurr is a sequence of the
three states before), the non-zero α values are α(1)

goal = p(1)
b p(2)

b , α(3)
goal = p(3)

b , α(0,0)
loop = p(1)

b p(2)
c , α(1,2)

loop = p(3)
a , α(2,2)

loop = p(3)
c .

The likelihood of the system terminating in a goal state (s.t.i.g.) if started in the initial state h(0)
curr can be calculated

inductively, as follows.

Lemma 2. Let λ̃(k)
goal denote the probability of s.t.i.g. after the history h(:k−1)

curr without repeating any combined state of

h(:k−1)
curr . Then the following hold for any 0 ≤ k < n:

λ̃(n)
goal = α̃(n)

goal, (6)

λ̃(k)
goal = p(k)λ̃(k+1)

goal /(1 − λ̃
(k)
loop) + α̃(k)

goal, (7)

where p(k) is the probability of transitioning from h(k−1)
curr to h(k)

curr, i.e.

p(k) = ∆
(
s(k)

curr

∣∣∣ s(k−1)
curr , δ(q

(k−1)
curr ,Ω(h(k−1)

curr ))
)
. (8)

This is because λ̃(k)
goal is equal to the probability of s.t.i.g. from h(:k)

curr without repeating h(:k−1)
curr plus the probability

of s.t.i.g. from h(:k−1)
curr without repeating h(:k−1)

curr if the kth combined state is not equal to h(k)
curr. The latter is simply α̃(k)

goal,

and the former is the sum of an infinite geometric series whose ratio is λ̃(k)
loop.

The probability of s.t.i.g. from h(0)
curr is LGT, and with the natural definition2 of h(:−1) := 〈〉, this probability is equal

to λ̃(0)
goal.

Lemma 3. LGT = λ̃(0)
goal

5.3. Measuring the looping goal likelihood

While PANDOR simulates the histories of a controller, it maintains variables α(k)
goal for each k, which is the sum

of likelihoods of the elements h ∈ Hk
goal such that h(k−1)

curr · h has already been visited. (This is done by increasing the

relevant α(k)
goal in the OR-step when the controller terminates in a goal state.) The following inequality trivially holds:

Lemma 4. α(k)
goal ≤ α̃

(k)
goal, with equality when every non-looping goal history from h(k−1)

curr has been visited.

Tracking the likelihoods of the encountered loops is done with a two-dimensional array αloop, with initial values
all zero. When a looping history is found in an OR-step, the relevant entry of αloop is increased by the probability of
the last state transition. Formally, after a history of h(0:n)

curr , if 〈q, s〉 = h(k)
curr for some k ≤ n, such that the likelihood of

the loop is `(h(k:n)
curr ) · p = ploop < 1, then α(k,n)

loop is increased by p, the probability of the last transition. (Note that in the
OR-STEP function, hcurr doesn’t yet include the current combined state.)

2 h(:−1)
curr can be interpreted as the history before h(0)

curr, which is an empty sequence.

10



For each k < m ≤ n, the product α(k,m)
loop · `(h

(k:m)
curr ) is the sum of likelihoods of those elements h ∈ Hk

loop where h(k)
curr ·h

has already been visited, and h starts with h(k:m)
curr but not with h(k:m+1)

curr . Thus, if the system starts in h(m)
curr, the probability

estimate that it will reach h(k)
curr before any other element of h(0:m)

curr , provided the first step is not h(m+1)
curr , is α(k,m)

loop .

Now we define λ(k)
loop, which is a lower bound on λ̃(k)

loop, based on the histories explored up to the current point of

the execution. After a history of h(k+1:m)
curr , the system can loop to h(k)

curr from any of h(i)
curr with k ≤ i ≤ n (meaning the

step after h(i)
curr is not h(i+1)

curr ), which for a given i has a probability of α(k,i)
loop

∏i
j=k+1 p( j)/(1 − λ( j)

loop).

λ(k)
loop =α(k,k)

loop+ (9)

+ p(k+1) (
1 − λ(k+1)

loop
)−1

(
α(k,k+1)

loop +

+ p(k+2) (
1 − λ(k+2)

loop
)−1

(
α(k,k+2)

loop + . . .

+ p(n−1) (
1 − λ(n−1)

loop
)−1

(
α(k,n−1)

loop +

+ p(n) (
1 − λ(n)

loop
)−1

α(k,n)
loop

)
· · ·

))
=

n∑
i=k

(
α(k,i)

loop

i∏
j=k+1

p( j)/
(
1 − λ( j)

loop
))
.

This calculation is done in lines 69–72 of Alg. 3. The following result is proved easily by induction on k.

Lemma 5. λ(k)
loop ≤ λ̃

(k)
loop, with equality when every once-looping history from h(k)

curr has been visited.

We define λ(k)
goal inductively with the help of α(k)

goal values, for all 0 ≤ k < n:

λ(n)
goal := α(n)

goal, (10)

λ(k)
goal := p(k)λ(k+1)

goal /(1 − λ
(k)
loop) + α(k)

goal, (11)

where p(k) is still the probability of transitioning from h(k−1)
curr to h(k)

curr. Using Lemmas 4 and 5, it can be seen that λ(k)
goal

is a lower bound on λ̃(k)
goal:

Lemma 6. λ(k)
goal ≤ λ̃

(k)
goal, with equality when every non-looping goal history from h(k−1)

curr has been visited.

In Alg. 3, the CALCLAMBDA function calculates λ(0)
goal based on αgoal, αloop, and hcurr, and this λ(0)

goal serves as the

basis for termination in the AND-step. (αgoal denotes the collection of α(i)
goal values for all i; similarly αloop.)

5.4. Failing and non-terminating histories

We can treat failing histories (histories that terminate in a non-goal state) and histories that contain a non-decaying
loop similarly to goal histories. We account for them via α(k)

fail and α(k)
noter values in a manner analogous to α(k)

goal; λ
(k)
fail is

defined similarly to λ(k)
goal. We have similar results for the relevant λ values as before:

Lemma 7. λ(k)
fail ≤ λ̃

(k)
fail, with equality when every non-looping failing history from h(k−1)

curr has been visited.

Calculating λ(k)
noter is done as λ(k)

goal, but it is peculiar in that multiple decaying loops can add up to a history that

cannot be extended into a terminating history (Fig. 2.3). When no history from h(k)
curr terminates, λ̃(k+1)

loop + λ̃(k)
noter = 1

– for example, h(k)
curr has an extension with likelihood 0.1 with a non-decaying loop at the end, and another extension

with likelihood 0.9 loops back to h(k)
curr. When this happens, the values of α(i, j)

loop are zeroed out for all i ≥ k and j ≥ k,

and λ(k)
noter is assigned p(k). (Lines 73–76.) With this caveat, the inequality result for λnoter is the following:

11



Lemma 8. λ(k)
noter ≤ λ̃

(k)
noter, with equality when every once-looping history from h(k−1)

curr has been visited.

We now have classified histories as those that could be extended into terminating ones (either in a goal state or
not) and those that have a non-decaying loop.

Lemma 9. λ̃(0)
goal + λ̃(0)

fail = LTER = 1 − λ̃(0)
noter

5.5. Rolling up the α values
Next, we see what should happen to the αgoal, αfail, αnoter, αloop values when the current history changes. Clearly,

when hcurr is extended, αgoal, αfail, and αnoter should be extended with an additional zero item, and αloop should be
extended with an additional row&column of zeros (lines 6–7).

When hcurr is shortened when the AND-STEP function returns, the last element (or last row&column) of these vari-
ables needs to be integrated to the previous ones before deleting them (CUMULATEALPHA function at lines 17, 45).
The approach is similar to how the first iteration of λgoal and λloop was calculated: in fact, the new α values are chosen
so that CALCLAMBDA returns the same values before and after CUMULATEALPHA is called. It is important to note
that this change in the α values doesn’t affect our earlier results:

Lemma 10. After αgoal, αfail, αnoter, αloop are assigned the values returned by CUMULATEALPHA, Lemmas 5, 6, 7, 8
still hold.

5.6. Correctness of the search
Our final theorem states that PANDOR meets desiderata D1–D3, and solves Problem 1 correctly.

Theorem 3. Given a planning problem P, integer N, and LGT? ∈ (0, 1), the search algorithm PANDOR is sound and
complete: every FSC C returned by PANDOR-SYNTH is N-bounded and LGT ≥ LGT? for P, and if there exists an
N-bounded controller that is LGT ≥ LGT? for P, then one such FSC will be found.

Proof sketch. Soundness. A controller C is returned by PANDOR-SYNTH only if LGT? ≤ λ(0)
goal (line 2.11). By

Lemmas 3 and 6:
λ(0)

goal ≤ λ̃
(0)
goal = LGT, (12)

making the controller LGT? ≤ LGT for P.
Completeness. Suppose there exists an N-bounded controller Cgood which is LGT ≥ LGT? for P.
Suppose a smaller controller C′ ≺ Cgood is rejected (property †). A failing or non-terminating history of C′

has the same property for Cgood as well, and is a valid history for the system 〈E,Cgood〉 (property ‡). A failing or
non-terminating history does not terminate in a goal state (property ?).

LGT(Cgood) ≤ (13)

≤ 1 − λ̃(0)
fail(Cgood) − λ̃(0)

noter(Cgood) by ?

≤ 1 − λ̃(0)
fail(C

′) − λ̃(0)
noter(C

′) by ‡

≤ 1 − λ(0)
fail(C

′) − λ(0)
noter(C

′) Lemma 7, 8
< LGT? by †

This is against the premise that Cgood is LGT ≥ LGT?, contradiction: no smaller controller is rejected.
Suppose that when the current controller is C′ ≺ Cgood, at a non-deterministic choice the next controller C′′ is

such that C′ ≺ C′′ � Cgood. If this execution branch of C′′ does not fail, then a controller was returned, which was
LGT ≥ LGT? by the soundness of the search.

In a finite environment, a system with an FSC has finitely many combined states. This implies that the number and
length of the at-most-once-looping histories is bounded above, and so is the number of OR-steps required to explore
these histories. At the end of the execution, every such history of C has been simulated, resulting in λ(0)

goal + λ(0)
fail +

λ(0)
noter = 1 by Lemmas 6, 7, 8, and 9. At this time one of the termination conditions is fulfilled.

If at every non-deterministic choice, C′′ is chosen such that C′ ≺ C′′ � Cgood, then as C′′ can’t be rejected (by the
argument above), either C′′ or an extension of it will be returned.
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5.7. Planning for minimum likelihood of termination
The above results outline how our algorithm can plan for a minimum LGT, but only minor modifications are

required for setting a lower bound on LTER as well. Formally,

Problem 3. Given a planning problem P, an integer N, LTER? ∈ (0, 1), LGT? ∈ (0, 1), find a finite-state controller
with at most N states that is LTER ≥ LTER? and LGT ≥ LGT? for P.

To solve this, the only change required in the pseudocode is in lines 11–15, where we simply extend the criteria
for early termination and failure. These changes are shown in Alg. 4.

Algorithm 4 Changes required in Algorithm 2 to specify a lower bound on both LTER and LGT.
Require: P, N, LGT?: as before,

LTER?: the desired minimum LTER

11: if λgoal ≥ LGT? and λgoal + λfail ≥ LTER?

12: return C
13: else if 1 − λfail − λnoter<LGT? or 1 − λnoter<LTER?

14: fail this non-deterministic branch
15: end if

This new search process is sound and complete with respect to Problem 3.

Theorem 4. Given a planning problem P, integer N, LTER? ∈ (0, 1), and LGT? ∈ (0, 1), the search algorithm
PANDOR is sound and complete: every FSC C returned by PANDOR-SYNTH is N-bounded and LTER ≥ LTER? and
LGT ≥ LGT? for P, and if there exists an N-bounded controller that is LTER ≥ LTER? and LGT ≥ LGT? for P,
then one such FSC will be found.

Proof sketch. Soundness. A controller C is returned by PANDOR-SYNTH only if LGT? ≤ λ(0)
goal and LTER? ≤ λ(0)

goal +

λ(0)
fail (line 4.11). By Lemmas 3, 6, and 7, 9:

λ(0)
goal ≤ λ̃

(0)
goal = LGT, (14)

λ(0)
goal + λ(0)

fail ≤ λ̃
(0)
goal + λ̃(0)

fail = LTER, (15)

making the controller LGT? ≤ LGT and LTER? ≤ LTER for P.
Completeness. Suppose there exists an N-bounded controller Cgood which is LGT ≥ LGT? and LTER ≥ LTER?

for P.
Suppose a smaller controller C′ ≺ Cgood is rejected – this can happen either for not meeting the bound on LGT?

(property †) or on LTER? (††). A failing or non-terminating history of C′ has the same property for Cgood as well, and
is a valid history for the system 〈E,Cgood〉 (property ‡). A failing or non-terminating history does not terminate in a
goal state (property ?). If the controller is rejected for †, then inequality 13 holds, otherwise:

LTER(Cgood) ≤ 1 − λ̃(0)
noter(Cgood) by ? (16)

≤ 1 − λ̃(0)
noter(C

′) by ‡

≤ 1 − λ(0)
noter(C

′) Lemma 9
< LTER? by ††

Either Eq. 13 or Eq. 16 is against the premise that Cgood is LGT ≥ LGT? and LTER ≥ LTER?, contradiction: no
smaller controller is rejected.

The algorithm terminates for the reasons described in the proof of Theorem 3.
Suppose that when the current controller is C′ ≺ Cgood, at a non-deterministic choice the next controller C′′ is

such that C′ ≺ C′′ � Cgood. If this execution branch of C′′ does not fail, then a controller was returned, which was
LGT ≥ LGT? and LTER ≥ LTER? by the soundness of the search.

If at every non-deterministic choice, C′′ is chosen such that C′ ≺ C′′ � Cgood, then as C′′ can’t be rejected, either
C′′ or an extension of it will be returned.
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A − − − B
q0 q1

A :→
− :→

B :←

− :←

A : stop
B :←

Figure 4: Left: The Noisy Hall-A(1 × 5) planning problem has the same state space as the deterministic variant, but every action leaves the
environment in the same state with probability 0.5. Right: A correct finite state controller for this probabilistic problem, as synthesized by
PANDOR.

5.8. Time and space complexity

In order to explore the whole environment with a given controller, we need to take O(bhmax ) steps, where b is the
branching factor at the AND-step (the maximum number of outcomes of an action), and hmax is the length of the
longest possible history without a repeated state (i.e. hmax ≤ |S|). At every AND-step, PANDOR needs to calculate the
λ vectors, which takes O(h2

max) steps due to the size of αloop. This exploration needs to be done, usually to different
depths, for every possible non-isomorphic N-bounded FSC, which we denote by #C . A controller is defined by its
transitions, hence #C < (N · |O|)N·|A|. It follows that the time complexity of the algorithm is O(bhmax · #C · h2

max) =

O(bhmax · #C).
These numbers are realized in an adversarial environment with extremely low probability (depending on the ac-

tion/outcome selection); in most realistic situations (i.e., non-adversarial environments), failure/success would be
orders of magnitude quicker. First, whenever a controller is found to not meet the desired LGT?, all of its extensions
are discarded immediately, leaving us with #C � (N · |O|)N·|A|. Secondly, most controllers are unable to explore the
whole environment, and require orders of magnitude fewer than bhmax steps. We believe the search process could be
further improved using admissible heuristics.

Analogously, we need to store the alpha vectors and the αloop matrix at each controller extension, which each
require O(h2

max) space. If the maximum number of controller transitions is #T (where #T ≤ N · |O|), then this results in
a space complexity of O(h2

max · #T ).

6. Preliminary Empirical Evaluations

The contributions of this paper are solely on the theoretical front. Nonetheless, we have released a proof-of-
concept implementation of the pseudocode in Alg. 2 and 3.3 In our preliminary evaluations, we observed that in
deterministic domains, our planner has the same runtime as the planner of [12], and the difference is only a small
linear factor for additional bookkeeping. But suppose we were to consider a noisy variant of the Hall-A domain
in Fig. 1 on page 2, where every action has a 50-50% probability of either succeeding or leaving the current state
unchanged. Here, because moving left in cell B is not guaranteed to succeed, we can see that an extra transition is
required to move the agent out of B in case the first attempt fails (q1

B : ←
−−−−→ q0). And indeed, the FSC synthesized by

PANDOR contains this transition, as shown in Figure 4.
In addition to the above, we now consider two new domains designed for testing PANDOR, and the performance

and output of the planner on them. We remark that although there are examples of interesting loopy planning problems
in the literature [7, 13], as well as noisy domains for probabilistic planners [21], challenging problems that test the
correctness of loopy plans in noisy domains are still needed.

6.1. The BridgeWalk domain

This environment simulates an agent that stands on the handrail of a bridge: on one side the sidewalk, on the other
side the river, and on the handrail n steps away is the goal. With every step taken on the handrail, the agent has a
0.1 probability of falling into the river (which is an absorbing state, i.e., it only has state transitions to itself), and

3The implementation can be accessed at https://github.com/treszkai/pandor
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AtGoal / ↓

¬AtGoal /→
AtGoal / stop

q0 q1

AtGoal / stop

¬AtGoal /→

¬AtGoal / ↑

AtGoal / ↓

Figure 5: Left: The BridgeWalk(4) environment. A indicates a dead end state; other states are marked with . For readability purposes, most
action names are omitted. Right: Two synthesized controllers for the BridgeWalk domain. Above: LGT? = 1. Below: LGT? = 0.9.

0.9 probability of moving forward one step. Every other move is deterministic, which include climbing on or off the
handrail (moving up or down), or stepping forward on the sidewalk (moving right in the top row). Trying to move off
the grid leaves the agent in the same state. The observation space is {AtGoal,¬AtGoal}, indicating whether the agent
is in line with the goal (but potentially on the sidewalk).

The state space of the BridgeWalk(n) environment is an (n + 1) × 3 grid world, with the initial state (n, 0), the
only goal state (0, 0). The actions are (0,1), (0,-1), (-1,0) (in the figure ↑, ↓,→, respectively), with transition
probabilities as described above. (The actions act as vector addition to the current state.) The observation at state
〈x, y〉 is AtGoal if x = n, and ¬AtGoal otherwise. The environment is illustrated on the left of Fig. 5.

In this problem, there are multiple goal histories from the initial state, and various controllers with different values
of LGT and state counts. A single-state controller can only attempt n forward steps: due to the noisy actions, this
controller has LGT = 0.9n. When the maximum number of states is 2, different LGT? parameters result in different
controllers – these are shown on the right of Fig. 5.

This environment demonstrates that our planner fulfills D1: PANDOR is capable of synthesizing controllers that
are less than perfect but whose LGT exceeds the user-defined LGT? parameter. Table 1 lists the number of steps and
time needed to synthesize the controllers.

6.2. Noisy Hall-A

Our Noisy Hall-A domains are the noisy versions of the deterministic Hall-A problems from [7], which came in
two variants; we described the one-dimensional variant at the beginning of this section. The synthesized controller
demonstrates that our algorithm satisfies D2 and D3: it is able to handle looping histories correctly.

We also modified the two-dimensional variant, Halls-A(n×n), into the Noisy Halls-A(n×n) environment (Fig. 6),
similarly as we did with the one-dimensional version. This is a square-shaped corridor, with the initial state in the
upper right corner. The goal is to visit every corner, return to state A, and terminate there (therefore every state has an
unobservable property of which corner has been visited). The observations are A, B, C, D, −, depending on whether
the current state is in either corner or a corridor cell. It can be shown that every correct controller has at least 4 states;
the controller synthesized by PANDOR is shown in Figure 6. An analysis of the histories of this controller shows that it
makes some sub-optimal moves, such as traversing the B−−−C corridor back and forth when an attempt to move left
from B in state q3 fails. These run-time inefficiencies have a limited effect on planning time, because during planning
no combined state is visited more than twice.
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Figure 6: Left: The Noisy Hall-A(5 × 5) planning problem. Right: A correct finite state controller for this probabilistic problem, as synthesized by
PANDOR.

Domain Instance N Steps Time LGT? LGT

BridgeWalk 4 1 6 <0.01 s 0.6 0.94 ≈ 0.66
4 2 124 0.04 s 0.999 1
100 2 1,034 7.7 s 0.999 1

Noisy Hall-A 1 × 4 2 40 0.01 s 0.999 1
1 × 100 2 424 4.4 s 0.999 1
3 × 3 4 9,468 6.4 s 0.999 1
4 × 4 4 11,126 9.4 s 0.999 1
5 × 5 4 12,784 11.9 s 0.999 1

Table 1: Summary of experimental results. N is the maximum number of allowed controller states, which is equal to the number of states of the
synthesized controllers. LGT? is the parameter used for synthesizing the controller; LGT is the property of the synthesized controller. The number
of simulated steps includes those that belong to a discarded controller. Times measured on a computer with a 2.7 GHz Intel Core i5 processor from
2014.

7. Related Work

Our results are related to a number of recent approaches on bounded search and FSC synthesis, but as we discuss
below, the nature of our results and the thrust of our proof strategy is significantly different from these approaches.
At the outset, our contributions should be seen as a full generalization of the work of Hu and De Giacomo [12] to
stochastic domains, in that it provides a generic technique for FSC synthesis in a whole range of planning frameworks
(cf. [12]) that can now be considered with probabilistic nondeterminism.

The work of Hu and De Giacomo [12] is positioned in the area of generalized planning. We will briefly touch on
approaches to generating loopy plans, and then discuss related correctness concerns.

Early approaches to loopy plans can be seen as deductive methodologies, often influenced by program synthesis
and correctness [11]. Manna and Waldinger [23] obtained recursive plans by matching induction rules, and Stephan
and Biundo [34] refine generic plan specifications, but required input from humans. See [22] for a recent approach
using induction.

Most recent proposals differ considerably from this early work using deduction:

• Levesque [19] expects two parameters with the planning problem; the approach plans for the first parameter,
winds it to form loops and tests it for the second.
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• Winner and Veloso [36] synthesize a plan sequence with partial orderings, and exploit repeated occurrences of
subplans to obtain loops.

• Srivastava [32] considers an abstract state representation that groups objects into equivalences classes, the idea
being that any concrete plan can be abstracted wrt these classes and repeated occurrences of subplans can be
leveraged to generate compact loopy plans.

• Bonet et al. [7] integrate the dynamics of a memoryless plan with a planning problem, and convert that to a
conformant planning problem; the solution to this latter problem is shown to generalize to multiple instances of
the original problem.

• Hu and De Giacomo [12] propose a bounded AND/OR search procedure that is able to synthesize loopy plans,
which is what we build on.

On the matter of correctness, Levesque [18] argued that generalized plans be tested for termination and correctness
against all problem instances; Lin and Levesque [20] extended this account to define goal achievability. In later work,
Cimatti et al. [10] defined the notions of weak, strong and strong cyclic solutions in the presence of nondeterminism.4

These notions are widely used in the planning community [6]; see, for example, [3] for an account of strong plan-
ning with a sensor model. Recently, Srivastava et al. [33] synthesize loopy plans in domains with nondeterministic
quantitative effects, for which strong cyclic solutions are studied. Our account of correctness is based on [2], which
generalized Levesque’s account [18].

Synthesizing FSCs is a very active area of research within Markov Decision Processes (MDPs) and partially
observable MDPs (POMDPs) [26, 29, 1]. But the majority of algorithms in this space either solve an approximation
of the problem, or they come without correctness guarantees. In contrast, emphasizing correctness, Junges et al. [17]
show how FSC synthesis for POMDPs can be reduced to parameterized Markov chains, under the requirement of
almost-sure plans that do not enter bad states. Similarly, Chatterjee et al. [9] propose the synthesis of almost-sure
plans by means of a SAT-based oracle. Not only are the algorithms significantly different from our own, but the
correctness specification too is formulated differently. Thus, our contributions are complementary to this major body
of work, and orthogonal to a large extent; for the future, it would be interesting to relate these strategies more closely.

When it comes to similarity to our algorithms, there are a variety of approaches based on bounded AND-OR
search, such as AO∗, LAO∗, and LRTDP (e.g., [5]). Here too, the specification criteria, the correctness bound and
the nature of the analysis are largely orthogonal to ours. For example, LAO∗ allows for loops, but the solution is not
necessarily a sound and complete N-bounded FSC: it yields a partial policy and does not allow for arbitrary likelihood
scenarios (e.g., an anytime bound such as the goal of generating a FSC where >20% of the paths reach the goal
state). Perhaps one could think of the difference between LAO∗ and LRTDP vs. PANDOR as being analogous to the
difference between the paradigms of dynamic programming vs. Monte Carlo methods in reinforcement learning [35].
With dynamic programming, incremental changes are made to the policy of the controller (sometimes based on the
entire state space), whereas with Monte Carlo methods, sample trajectories are used to evaluate the performance of
the current policy. In fact, we think our proposal is suitable to combine the best of the two worlds, but that is a topic
for future research. We are also excited about the prospect of extending our contributions to the continuous case, and
potentially providing asymptotic guarantees for provably correct FSC synthesis.

8. Conclusions

In this paper, we presented new theoretical results on a generic technique for synthesizing FSCs in stochastic
environments, allowing for highly granular specifications on termination and goal satisfaction. We then proved the
soundness and completeness of that synthesis algorithm.

There are many interesting directions for the future. For example, one could investigate: (a) effective sampling
strategies; (b) the tradeoff between higher LGT bounds vs scalability (i.e., demands on LGT bounds may be different

4Variant additional stipulations in the literature include things like fairness, where every outcome of a nondeterministic action must occur
infinitely often [6].
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across applications); and (c) the merits and demerits of the various correctness criteria from the literature for safety-
critical applications. To that end, along with recent advances in the area, we hope that our results provide theoretical
foundations, new proof strategies and a fresh perspective on FSC synthesis in stochastic domains.
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