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1 INTRODUCTION

In this master thesis, we present a new framework for the automatic detection, recog-
nition and learning of human faces with random forests. The principal motivation for
our work is towards the design of a fast face processing system, especially applicable to
mobile robots. Given a high amount of social interaction between a robot and human
beings, the experience is rendered more natural if the robot is able to detect faces and
recognize corresponding identities. If the identity of the person is not known then it is
learnt by the robot.

1.1 Motivation

Robots that interact with humans, such as rescue robots and service robots, frequently
encounter human faces. Rescue robots are principally designed to be of aid to rescue
workers and humans in danger. Typically scenarios where rescue robots are deployed
include disaster-struck areas, explosions, infernos and building collapses. The robots
self navigate in hazardous environments to either probe for surviving humans or to
neutralize any immediate danger and make the surrounding less perilous for human
rescue workers.

Service robots, generally, are designed to offer assistance to humans and to people
with disabilities, in particular. They could be used for day to day activities, such as
retrieving tools and objects, for and by humans (civil usage). They could also be used
to provide feedback on approaching entities to the visually impaired and in general,
provide structural support for the physically or mentally impaired.

In both of the applications of robotics discussed above, there is a high amount of social
interaction between the robots and the human beings. The robots respond dynamically
to requests and communicate with human beings. An indispensable characteristic of
such robots is the automatic detection and recognition of the faces of humans they
interact with. To elucidate further, the interaction will be rendered more human-like if
a robot is able to identify a human from a group of known individuals. Further, if the
identification fails then the robot may introduce itself like any of us. It must then learn
the new individual and assimilate the identity into its recognition system. We propose
a face processing system that targets the aforementioned requirements.
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1 Introduction

1.2 Approach and Contributions

Central to our approach are random forests. Random forests are defined as "a combi-
nation of tree predictors such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all the trees in the forest" [1].
In our thesis, we present an integrated framework to the detection, recognition and
learning of human faces using random forests. Such a system will find immediate
applications in rescue and service robotics as outlined above.

As emphasized, the focal point of our work is towards an improved human-robot
interaction. An important criterion for a prospective face recognition system is response
time. A robot that reciprocates with a massive delay, at least in relative comparison to
human beings, will deliver a frustrating experience. A robot that requires an extensive
period of time to learn and recognize people is an antithesis to our expectations. It
is thus clear that service robots that accompany the elderly and disabled are to be of
assistance to their owners just as human companions would. It is of essence to have a
fast face processing system in place.

In line with our contribution to rescue and service robotics, we aim to be applicable
to RoboCup@Home. RoboCup@Home is "the largest home robotics competition" and
is held annually [2]. This competition is a division of the RoboCup competitions that
"attempt to foster AI and intelligent robotics" [3]. RoboCup momentarily encompasses
an eclectic collection of games, many of which encourage cooperation between a ma-
chine and its human counterpart [4]. The robots are expected to work autonomously.
Zant and Wisspeintner [3] discuss tests that outline a few application scenarios. In
some of the scenarios, owner identification is predominant. Learning of new identities
present an added improvement in the behavioral component of the robot. Our pro-
posal, which presents an integrated framework to detection, recognition and learning
of new faces will bring the RoboCup robots closer to the point of succeeding in the
above evaluations.

Contributions to robotics aside, the framework presents an addition to the recent ap-
plications of random forests as a statistical learning procedure. Random forests have
been applied, with promising results, in image classification [5, 6, 7, 8, 9, 10], image
matching [11], positioning discriminatory and generative image regions [12], segmen-
tation [13] and gesture recognition [14]. Extending the literature above to develop
random forests for face detection and recognition presents an interesting research goal.
Random forests are proven to be fast [12, 5, 6, 7, 8, 9, 10, 15] which is pertinent with
our motivation. Further, a random forest is a powerful statistical framework [1] with a
very high generalization accuracy. A good generalization accuracy is critical for many
learning algorithms, in general, and image classification in particular as it remarks on
the performance of the algorithm on novel data. Image classification tasks encounter
substantial variations in the image data such as occlusions, illumination variations
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and object pose changes. Our framework effectively casts face detection and recogni-
tion as a classification task and hence the aforementioned theoretical benefit of a high
generalization accuracy is significant.

In general, random forests present the following advantages:

1. The approach is generic. It is easily extendable to the detection and recognition
of any object other than faces.

2. Image classification is reported to be successful in spite of partial occlusions [16].

3. Random forests are a parallel learning algorithm - critical components can be
executed completely in parallel.

4. The approach has a quick training phase.

5. Random forests can achieve an extremely high generalization accuracy.

6. The nature of random forests presents a uniform strategy for accomplishing many
image classification tasks.

In conclusion, our goal is to build a fast and unified framework for face detection, face
recognition and face learning using random forests for mobile robots.

1.3 Outline

The outline of the thesis is as follows: Chapter 2 discusses literature on the applications
of random forests for image classification, object detection, segmentation and gesture
recognition. Chapter 3 reviews the general framework for any face recognition system
and enumerates approaches to face detection. Chapter 4 presents feature extraction,
face recognition and publicly available training data for face detection and recognition1.
Chapter 5 discusses our framework: face detection, recognition and learning using
random forests. Chapter 6 presents comparative evaluations on our approach. We
draw our conclusions and outline future work in Chapter 7.

1Although our organization of related work in Chapter 2 is limited to applications of random forests, it
should be noted that the face detection and face recognition approaches reviewed are also relevant as
related work. Chapter 2 only presents frameworks analogous to our own.
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2 RELATED WORK

In this chapter, we review literature that use random forests for a number of related
image classification tasks. The approaches enumerated below, in addition to our work,
grow decision trees by randomizing the decision criteria. In Section 2.1, we introduce
a few basic concepts of a learning framework followed by an overview of classical
decision trees and random forests.

The literature review, in Section 2.2-2.5, covers applications of random forests to image
classification, object detection, segmentation and gesture recognition. The applications
additionally reveal some of the advantages of random forests. We conclude this review
in Section 2.6.

2.1 Basic Concepts

A supervised learning system is characterized by a learning algorithm and labeled
training data [17]. The algorithm dictates a process of learning from information ex-
tracted, usually as feature vectors, from the training data.

Training data is typically of the form:

D =
{(

Γn, cp
)

: n = 1, . . . , N; p = 1, . . . , P
}

(2.1)

where ΓN
1 are the data and cP

1 are the corresponding class labels. If the training data are
images then the data is considered to be M dimensional, i.e. the images are defined by
K× L pixels (where K ∗ L = M). As we work only with images in this work, we limit
our discussions to the same.

Any rectangular region of an image is a local characteristic of the image and is referred
to as a local visual descriptor [12]. As images, in general, are high dimensional the
descriptors are quantized as feature vectors using filters. Feature vectors are a more
efficient representation for purposes of comparisons and computations by the learning
framework.

A general description of a filter is given by,

f (Γ) : Γ #→ %M′
(2.2)
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where M′ < M and % is the space of real numbers. Essentially, a filter maps an image
or a region to either a scalar (M′ = 1) or a vector (characterized by dimensions lower
than M). The resulting entity is termed as a feature or a feature vector respectively.

A learning framework uses the feature vectors extracted from the labeled training data
to build a classifier for classification. The task of classification is to assign a label on
novel data given labeled training data.

A general definition of a classifier is given by,

h(Γ) : Γ #→ p (2.3)

where p = {1, . . . , P} is the class label awarded to the novel image Γ. To investigate
the performance of a learning framework, we use a labeled test data collection that
measures the accuracy of the labels awarded. Formally, classifier accuracy is probed
with a correctness indicator function Ih(Γ) defined as,

Ih(Γ) =
{

1 if h(Γ) is the true label of the test image Γ
0 otherwise (2.4)

2.1.1 Classical Decision Trees and Random Forests

A random tree is structurally homogenous to a classical decision tree. Classical decision
trees and random trees are grown recursively top down. Classical decision trees find a
decision criterion that best divides the multi-class training data into two groups at each
node [18]. A decision criterion consists of an attribute and a related threshold.

Random trees, on the other hand, randomize the decision criteria. A random decision
criterion is defined by a random attribute and a random threshold. Random trees, thus,
divide the training data on completely random attributes. This randomization mainly
addresses high dimensional data and generalization [19, 20, 1]. To elucidate, classical
decision trees perform poorly when trained on high dimensional data, such as images,
as an exhaustive search to find the best split criterion is computationally expensive. As
an example, a 50× 50 image is 2500 dimensional. Classical decision trees also suffer
from overfitting or low generalization with high dimensional data [21, 22, 18]. Overfit-
ting is the condition of a grown decision tree that is meticulously consistent with the
the training data and yet not learnt "useful" information. The tree has, in this case, max-
imized information gain on non-critical attributes due to the high dimensionality of the
training data and the attributes are too general to be of any use. The performance, with
overfitting, is low on unseen or novel data. Image data has substantial variations due
occlusions, illumination and pose changes and hence, a high generalization accuracy
is important. Random trees thus, address two of the shortcomings of classical decision
trees that are especially applicable to image training data.
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2.2 Image Classification

To reiterate our description, a random tree selects a random feature and a random
threshold and divides the training images at a node. Recursively, a complete tree and
subsequently a collection of trees are built that constitute a random forest. The classi-
fication results from each tree are collected for an input image and typically, a simple
majority voting scheme awards the resulting class label. In the following sections, we
present the use of random forests on a number of related image classification tasks.

2.2 Image Classification

Random forests for image classification have been extensively covered by Marée et
al [5, 6, 9, 10]. A general description of the image classification problem is to categorize
a previously unseen input image and subsequently assign a label using information
drawn from labeled training images [10]. Image classification is used with images from
geology, biology, building images, cars, motorbikes etc. for various labeling tasks.

The central idea of the approach taken by Marée et al. [10] is to sample random sub-
windows, scale them and grow a random forest from features extracted from the sub-
windows. The sampled subwindows are random both in their location and size. The
size is allowed to range between 1 × 1 pixels to the maximum square window possible.
Once sampled, the subwindows are rescaled to 16 × 16 pixels.

An illustration ensues in Figure 2.1. Here, numerous subwindows, of different sizes,
are sampled and account for decisions at different levels of a tree. The textures in
the figure represent local patterns. Three random trees are shown, each of which
is built independently. The trees necessarily need to be built independently as the
generalization error is inversely proportional to the independence of the trees [1].

Classification on an input image is carried out by randomly extracting subwindows
in the image and propagating scaled subwindows down each tree in the forest. Votes
from each of the random trees for all sampled subwindows are aggregated. A simple
voting scheme with majority ruling awards the corresponding class label. Experimen-
tal evaluations on a variety of image classification databases, namely (i) COIL-100, a
dataset of 100 different 3D objects, and (ii) ZuBuD, a dataset of 201 buildings in Zürich
were presented. The results are very competitive.

Marée et al. [9] discuss that one of the benefits of the random forest approach is that
the classification is robust to partial occlusions. This is attributed to the fact that not all
the sampled subwindows of the input image need to be correctly labeled. The voting
scheme allows the classifier sufficient flexibility to falsely categorize a few subwin-
dows.

Marée et al. [5, 10] also claim that the rescaling of all sampled subwindows to a fixed
dimension for training renders the classifier scale invariant. Further, the pixel values
are moved to the Hue-Saturation-Value (HSV) space. The HSV value considers the

7
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T1 T2 T3

Figure 2.1: Random forest from random subwindow sampling and scaling. The sub-
windows are scaled to the 16 × 16 (see text). Trees T1, T2 and T3 are grown
independently.

image in terms of its color (hue), vibrance (saturation) and brightness (value). The
significance of images in the HSV space is that the illumination is shifted to only one
band (brightness) when compared with three separate bands in the RGB color space.
The input from the brightness band is limited for all training and input images which
renders the classifier illumination invariant.

An increase in the classification accuracy is noted on using more than one tree. Marée
et al. [10] report that, with extra trees, the error rate is reduced by more than 6% on the
COIL-100 protocol.

The above classifier used simple voting to aggregate results from all the trees in the
forest. A more complex aggregation mechanism is the use of visual codebooks. Moosman
et al. [12] sample the training images, quantize the descriptor vectors and grow a ran-
dom forest as above. Each leaf node is awarded a distinct visual word from the features
present in the node. An input image is sampled and propagated down each random
tree to the leaf nodes. The visual words of the corresponding leaf nodes are histogram
plotted. A Support Vector Machine (SVM)1 on the histograms identifies the class label
for the image. Thus, the trees function on a spatial partitioning mechanism [12]. The
approach shares similarity to the bag-of-words model [23] from text classification where
a collection of cues, not necessarily ordered, are used for classification.

1We review SVM in Section 4.2 and Figure 4.3.
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2.3 Object Detection

2.3 Object Detection

Image matching extends image classification and can be used to detect "objects" in a
background. The problem can be defined as follows: given knowledge of the geometric
appearance of an object, followed by a few scenes of the object in a background, object
detection identifies the extent and the position of objects, if any, in an input image [16].
The presence of objects in the input image is as determined by a human.

Figure 2.2: Selection of a few hundred keypoints in an object [11].

Lepetit et al. [11] present a selection of 200 keypoints based on a probability measure.
Figure 2.2 shows the selection of such keypoints in a stuffed toy. A random tree is
grown by creating tests at nodes of the kind: is the intensity of the pixel at (x, y) higher
than the intensity of the pixel at (x + 1, y)? Forests are grown by using random subsets
of the training images for each tree to ensure increased independence between the
trees. To detect the object, patches of the input image are propagated down the tree
and keypoints are matched.

2.4 Segmentation

Yin et. al [13] present a random forest based monocular segmentation approach. The
principal application targeted is video chat with background substitution. Segmenta-
tion is defined as the separation of an object of interest from its background. While the
most competitive results to segmentation have been achieved with stereo vision [24],
comparable results are presented using monocular vision and random forests.

Spatio-temporal derivates are used as "motion" filters. The filters are clustered and
titled as motons. Each moton represents a unique response of input images (images
from the video camera) to motion analysis. For instance, image regions that "move" in
the background are identified with clustered spatio-temporal derivates as the "moving
edge" moton. Regions of an image with weak textures are identified with a "weak

9
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texture" moton. Regions of the image that do not move are identified with a "stationary-
edge" moton.

Rectangular regions sampled from captured still images are paired with motons as
shape filters. The shape filters are used in training random forests. A subset of shape
filters are used to train each tree. Training with subsets of shape filters guarantees inde-
pendence between the random trees. An approach previously discussed in Section 2.3
also train random trees with subsets to ensure independence.

When the video chat is initiated, a captured image is propagated down each tree.
The shape filters segment the foreground from the background. The latter is then
substituted with any other image.

2.5 Gesture Recognition

Gesture recognition capture and identify human gestures. Hand gestures are used to
accomplish tasks such as copy and paste, erase selected text and move windows just as
one would with a real object. Deselaers et al. [14] use stereo vision to capture depth and
present a unified framework for recognition of object classes (hands holding objects),
gesture recognition and touch events, using random forests.

Manually segmented hand gestures (positive samples) and background images such
as tables and desks (negative samples) serve as the training data for the random forests.
The decision criteria is characterized by the comparison of pixel intensities at random
locations in the training data with randomly chosen thresholds. The initial task of the
framework is the segmentation of the hand region from the background in a captured
still image. The captured image is propagated down a forest trained as above and the
framework segments the hand from any background.

To recognize the gesture of the segmented hand, each tree is grown further with multi-
class hand gesture training data. Here, each gesture is a class and the training data
is composed of stereotypical images for this gesture. Propagating the same down the
extended tree will now recognize the gesture. To recognize touch events, the trees are
extended further with stereotypical touch event image as training data.

Figure 2.3, for instance, depicts a few hand positions. The images stereotype various
object classes, gestures and touch events. The images are the training data for the three
separate recognition tasks modeled in a single integrated framework.

10
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Figure 2.3: A set of sample hand positions stereotypical of clutching objects (pen, paper,
card) and actions (grab, select). [14].

2.6 Summary

As discussed previously, the approaches are, in principle, analogous image classifi-
cation tasks. The exact nature of the training data used is dependent on the specific
goal of the learning framework. The decision criterion in every approach enumerated
in this review is characterized by a random component. Marée et al. [9, 5, 6, 10] and
Moosmann [12] sample rectangles of random dimension at random locations. Lepetit
et al. [11] sample pixels at random locations. Yin et al. [13] randomly sample shape
filters, defined as clustered spatio-temporal operators paired with rectangular regions.
Deselaers et al. [14] sample pixels at random locations. Subsequent to the growth of
the forest, the classification tasks sample the input images and propagate the same on
the trees to return class labels. In our own framework, the random component is the
sampling of randomly sized rectangles at random locations from the training data. The
framework is presented ensuing a review of the current approaches to face detection
and face recognition.
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3 FACE DETECTION

As Yang et al. [25] discuss, research in face recognition proceeds with the assumption
that the face is already segmented from the background image. However, a complete
face processing system must include an additional face detection system that is able
to segment or extract faces from a complex background and supply the faces to a
recognition module.

An intermediary stage is that of extracting features. As many face detection approaches
train on features, feature extraction may be an implicit component in the system. Fig-
ure 3.1 shows the three stages of face recognition. In this chapter, we discuss ap-
proaches to face detection.

still video 

or image

Face
Detection

Face 
Recognition

Feature 

Extraction

Figure 3.1: The three stages of a face processing system.

3.1 Introduction

Face recognition systems are currently one of the most important and widely used
applications of image understanding and pattern recognition [26]. Some common
applications include,

• Service and Rescue Robots: offer assistance, neutralize perilous environments,
structural support to the disabled.

• Biometrics: driver’s license, passports and voter registrations.

• Information Security: file encryption and desktop logon.

• Law Enforcement and Surveillance: CCTV cameras and suspect tracking.

13
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• Access Control: facility access (access to buildings and houses).

In the above, face images serve as the primary input to accomplish tasks of encryption
and identification. We note that applications such as suspect tracking might have
to deal with different head gaits, partial occlusion of the faces due to foreign objects
among others. Even a desktop logon system can expect the presence of a foreign body
in the background as can a facility access provider. None of these applications can thus
straightforwardly carry out face recognition. The crucial step is to precisely locate the
faces in the image prior to further processing. This step is referred to as face detection.
Face detection is thus defined as, “Given an arbitrary image, the goal of face detection
is to determine whether or not there are any faces in the image and, if present, return
the image location and extent of each face” [25].

A face detection system, operating in real life scenarios, can be expected to encounter
any of the challenges listed below. For instance, a service robot and its supporting
camera usually captures furniture, different light sources, other objects along with
humans.

• Pose variations. Excluding the sole case of a human facing the camera either out
of participation or accident, most applications can expect different side profiles.
Some applications, such as a smaller robot interacting with a human, capture still
images from a lower angle. CCTV Cameras usually capture human faces from
an upper angle. In rare cases, upside down and rotated faces are also captured.

• Occlusions. Foreign objects obstructing the view of the camera make the task
of detection (and recognition) difficult. Depending on the percentage of the face
that is occluded, face detection may even be impossible.

• Illumination. Another challenge is related to the illumination conditions under
which the image was obtained. For instance, if the illumination was very low, the
face contour might not be discernible from the background. Only a part of the
face may be illuminated. Further, the source and direction of the illumination is
also important.

• Facial components and structures. The presence or absence of beards and mus-
taches, changed hair styles are also challenges.

In most real life scenarios, a captured image includes multiple faces. A simplified prob-
lem is, thus, to assume the presence of only one human face in the input image. This is
referred to as the face localization problem. An alternative is the task of locating features,
such as eyes, nose, ears and mouth, and is referred to as facial feature detection.

A measure of the effectiveness of a face detection system is the detection rate. The
detection rate is calculated as,

Detection rate =
Number of faces correctly detected

Total number of faces in the image as determined by a human
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where the rate is derived from the generic correctness indicator function previously
defined in Equation 2.4.

A detection stage can commit two kinds of errors: false positives and false negatives [25].
False positives are referred to as those errors when a face was reportedly detected by
the system but there is no face in the image. A false negative is recorded in case a
face is not detected, i.e. a region of the input image is falsely assumed to not contain a
face. Further, awarding the "bounding box" returned to be a correctly detected face is
determined by constrains that declare the percentage of overlap between the returned
bounding box and the actual face as a threshold. Additionally, the extent of the face
(area of the bounding box) independently is measured to the extent as determined by
a human being. If the bounding box is too large or too small, then the result is deemed
as invalid.

The granularity of false positives and negatives can be reviewed further with the align-
ment error. The alignment error is the case of a subwindow nominated as a face, but
the position and extent of the detection only partly covers the face. Depending on the
precision expected of the detections, the alignment errors border false positives or false
negatives. We note that procuring very high detection rates with an increasing num-
ber of false positives is not a fair evaluation, i.e. the false positives count is almost as
important as the detection rate. Algorithms search for a tradeoff between the detection
rate and the number of false positives. A graphical tool that monitors this tradeoff is
the Receiver Operating Characteristics (ROC) curve [27, 28].

It can be concluded from the above that face detection, as a machine learning ap-
proach, is a two class problem: the task is to identify if an image region is a “face” or
a “non-face”. In accordance, the training data for face detection is organized into two
collections: faces and background images. In the following section, we review a few
approaches to face detection.

3.2 Approaches To Face Detection

Traditionally, the approaches to face detection can be roughly divided into four cat-
egories: knowledge-based, feature-based, template matching and appearance-based.
Recent literature [29, 30], including our work, utilize a generic sampling-based ap-
proach. We review all five categories in this section.

3.2.1 Knowledge-based methods

Knowledge-based methods extrapolate the human understanding of the structural
characteristics of a face. Rules are formalized from morphological facts. The presence
of two eyes which are symmetrical, a triangular nose, the relative difference in color
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between parts of the human face etc. are encoded as relationships. If the rules encoded
are too specific, the detection accuracy drops as small variations in the requirements
results in false negatives. If the rules are too general, many false positives result. To
allow for variations in the structural descriptions, a few approaches employ fuzzy
theory.

The approach typically builds on multi-resolution or mosaic images. Initially, image
analysis is carried out at a very low resolution to probe for any high level morphologi-
cal description. Subsequently, the resolution is increased and the descriptions are more
specific.

hair

beard

Figure 3.2: Structural characteristics are encoded as rules in different cells. The diagram
depicts a Π shaped hair region, a beard region and central homogenous nose
and mouth region [31].

Yang and Huang [32] divide a stereotypical face into a number of units or cells that
must conform to specified descriptions as shown in Figure 3.2. In the figure the central
region of the face, for instance, occupy 4 × 4 cells. This is referred to as a quartet. The
bottom portion of this quartet occupies 4 cells (light gray colored) and typically, this
region of a face is homogeneously colored. Thus, a rule that applies here is “this part of
the face has four cells with a basically uniform intensity”. Similarly, a Π-shaped region
composed of dark pixels and of significant length denotes a stereotypical hair area. A
stereotypical beard description is depicted in the figure as well.

At a higher resolution, the quartet is subdivided into 2 × 2 regions or octets. With an
analogous rule description, the eyes and nose are detected. The approach is thus a hi-
erarchical knowledge-based recognition system [32, 31, 25]. Kotropoulos and Pitas [31]
extend the work by reducing computational needs and a preprocessing step to estimate
cell dimensions.
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The importance of this technique is the modeling of human intuition although it suffers
from being more of a localization technique as opposed to detection of multiple faces.

3.2.2 Feature-based methods

Feature-based methods are those that take a bottom-up approach by locating facial
features initially and then collecting their respective enclosing entities such as edges,
blobs, streaks and graphs as a detected face. Typically, edge detectors are used to
identify particular shapes such as eyebrows, eyes, noses etc. and statistical models
estimate distances between these shapes. A linking stage follows that collects them
into groups and subsequently detects a face. Figure 3.3 illustrates this approach: edge
filtering and grouping to detect faces.

Eyebrows Eyes Nose

Linking

Figure 3.3: Edge detection followed by linking and grouping to detect faces.

Sirohey [33] reasons that since the shape of a face is roughly elliptical, facial features can
be combined in an ellipse fitting probe. Essentially, he uses a Canny Edge Detector1 [34]
to identify all the edges. Heuristics are used to create an edge map, i.e. unconnected
edges (the output of the edge detector) are linked to verify if ellipses formed thus
conform to that of a face contour. The final result is a detected face.

While Sirohey uses edges of face features and face contours, any sort of morphological
identity can be chosen. For instance, learning the texture of skin and hair is used
to detect faces [25]. The use of skin color in color spaces, such as RGB and HSV, to
accomplish detection is also reported [35].

Graf et al. [36] use a combination of features to detect faces from videos. Their approach
uses shape modeling, color response and motion. The first stage uses spatial frequency
filters to identify the best set of facial features (eyes, nose etc.) that can be used to

1A Canny Edge Detector is an multi-stage detection technique. A complete description of the technique
is beyond the scope of this thesis.
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detect faces. The second stage trains on the best thresholds for responses to color filters
that can segment faces from the background. The last stage calculates the absolute
difference in regions to identify "moving" pixels to segment the human face. This is
similar to a spatio-temporal filter. The three different stages supply a list, as cues, and a
n-gram2 model decides on the location and extent of a face. Feature-based approaches,
in general, perform poorly with blurred images [25].

3.2.3 Template Matching

Template matching is based on correlation values. Features such as contours and edges
are extracted and their relative locations are matched against predetermined estimates.
Conformance to a certain ’skeleton’ is considered to be a detection.

Scassellati [37] uses ratio templates for quick detection of faces. He considers ratio
templates to be "biologically plausible" as the templates can be hand coded or learnt
from training data, much like the learning models in humans. The approach virtually
divides the human face into 16 regions of interest using a 14 × 16 pixels grayscale win-
dow. Each region is averaged using a grayscale window. Modeling the typical relative
brightness between the regions, the ratio template outlines constrains for a region to be
considered to contain a face. The regions also intuitively denote different portions of a
face, such as the temple (left or right) and forehead (left or right). Typically, irrespective
of the illumination conditions, the eyes are darker, the nose is homogeneously brighter
etc. thus making ratio templates illumination invariant. Figure 3.4 illustrates the di-
visions and relationships in the model. As faces in an input image can occur at many
scales, the grayscale template is probed for all possible regions of the input image at
different scales to detect faces.

An improvement to the "fixed" templates, such as the approach above, are deformable
templates. With deformable templates, sufficient flexibility in the template structure
is allowed so as to account for variations and thus increase the detection rate. They
address some of the shortcomings of fixed templates where the latter suffers from low
detection rates with shape, scale and pose variance.

Yuille et al. [38] propose a generic deformable template based on an energy mini-
mization function. The energy function is defined by peaks, edges and valleys corre-
sponding to a feature. For instance, they define an eye template characterized by four
properties, the first of which is a circle of an specific radius that corresponds to the
enclosing circle of the iris. The second describes a contour for the eye. The third and
fourth model the whites of the eye. The template definitions are built as a function
and the algorithm searches for a conformance to the definitions, i.e. lowest value that

2An n-gram is a probability measure for subsequences. Here, sequences of features from the three stages
that lead to a detected face in the training data are learnt.
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Figure 3.4: A division of a stereotypical face into 16 regions of interest. The face is
assumed to be 14× 16 pixels in dimension. Relationships are encoded to
detect faces [37, 25].

the function can achieve, in the input image. Such templates can be extended to other
features and the face itself.

3.2.4 Appearance-based models

Appearance-based models attempt to reduce the dimension of the training data before
extracting statistical properties. Typically, these models calculate the class-conditional
probability for a feature vector extracted from the input image. If the feature vector is x,
then we calculate the Bayesian likelihoods p(x| f ace) and p(x|non- f ace) from the train-
ing data [25]. Since a direct computation of likelihoods is computationally expensive
techniques such as Principal Component Analysis (PCA) are used for dimensionality
reduction.

Eigenfaces [39, 40] is a pioneering appearance-based approach [41]. Let us consider
M dimensional training data denoted as ΓN

1 . PCA attempts to find an effective and
efficient representation of the training data. From the training data Γ1, . . . , ΓN , the
average image and the covariance matrix is calculated as,

ψ =
1
N

N

∑
n=1

Γn

C =
1
N

N

∑
n=1

(Γn − ψ)(Γn − ψ)T (3.1)

where ψ is the average and C is the covariance.
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The eigensolution for the covariance matrix is calculated and the eigenvectors are
ordered in decreasing eigenvalues. The eigenvectors considered thus are representative
of the training images where the higher vectors contain most of the information. To
account for generative information, a subset of the highest eigenvectors M′ (where
M′ < M), is used. The cardinality of M′ is heuristically chosen. The eigenvectors are
collectively referred to as the "face space" [39].

To detect faces, an image region Γ of the same dimensions as the training image is
mapped to the face space by first calculating Γ− ψ and considering the dimensions in
M′ only. If a region contains a face, the representation of the same in the "face space"
will be small as we calculate the difference with the average face, ψ, in Γ− ψ. Similarly,
the "face space" representation for a non-face will be comparatively larger. A threshold
can thus determine if the region is a face. An iterative procedure over all possible
locations will return a list of image patches regarded to contain faces by the algorithm.
The input image can be scaled to different factors and the procedure repeated to detect
faces of all sizes. Figure 3.5 shows an average face ψ and a set of eigenfaces.

Sung and Poggio [42] introduce a distribution-based face detection approach. Canon-
ical face and non-face patterns are collected as training images from which represen-
tational clusters are listed. The clusters are approximated to a number of multidimen-
sional Gaussians. The clusters are further refined by using non-face clusters, also ap-
proximated as Gaussians, that surround the face clusters. Distance measures between
the collection of clusters detect faces in sampled regions of the input image.

A discussion on appearance based models would be incomplete without a mention of
the neural network based face detection system by Rowley et al. [28, 43]. An ensemble
of neural networks trained on preprocessed images is used. Training images are 20 ×
20 pixels in dimension and are histogram equalized3 so as to render the system illu-
mination invariant. To deal with the false positives, a number of arbitration methods
such as an attentional neural network to merge detection results from different neural
networks are employed. If faces are falsely detected in images where there are none,
the regions assumed to contain faces are added to the non-face training image collec-
tion so as to prevent such detections in the future. The end result is a very robust face
detection framework. To conclude, we note that appearance-based methods remain to
offer one of the most competitive results to-date.

3.2.5 Sampling-based Approach

Sampling-based approaches probe local visual descriptors to learn facial characteristics.
In contrast to some of the previous approaches, the descriptors are estimated directly
from the training data and do not typically conform to any template.

3Histogram equalization is an image processing technique to modify the dynamic range of image inten-
sities and improve contrasts [44, 45].
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Figure 3.5: An average face followed by a set of eigenface images [41].

The task of finding the descriptors is implemented by sampling the training images at
regions of interest. Approaches can sample images densely [23, 46], randomly [10] or at
salient points [47]. An exhaustive procedure is to sample all possible pixel positions but
this is computationally prohibitive and hence avoided. Figure 3.6 shows the sampling
of a few rectangular regions in training images.

Classifiers are built by first quantizing the descriptors using a set of filters to obtain
features. The features are thresholded as decision criteria. Rectangular regions of
the same dimension as the training images are sampled iteratively in the input image.
Features at equivalent locations are extracted and compared with those collected by the
classifier. Distance measures such as euclidian or mahalanobis are used to nominate
the class label (face or non-face). It follows that this approach is generic: as face-specific
properties are generally not modeled as part of the algorithm, it can also be used to
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Figure 3.6: Sampling rectangular regions for training [48].

detect objects other than faces.

A renowned [29] sampling-based learning framework was proposed by Viola and
Jones [30] that uses boosting to learn discriminant features4. This approach builds
many binary decision stages. Each stage focuses on features that leads to the minimal
error on dividing the training set into two groups. Since there is usually never a single
feature that returns zero error [30], the learning algorithm builds attentional stages
on features that return the minimal error for each additional stage. At the end of the
training procedure we obtain a cascade of simple classifiers that have learnt a small set
of criteria to effectively determine if a region of the input image contains a face or not.
As it is the subject of all our performance evaluations, we briefly review a summary of
the approach.

For a two-class problem, Equation 2.1 can be written as {(Γn, cn) : n = 1, . . . , N}, where
cn ∈ { f ace, non- f ace} is the corresponding class label. At each stage t, the approach
computes a classifier that divides the training data at this stage into two with the
smallest error. The error with respect to a classifier hj is evaluated as,

ε j = ∑
n

wn|hj(Γn)− cn| (3.2)

where hj(Γn) is 1 if the feature in Γn exceeds the threshold and 0 if not. Equation 3.2
thus computes the number of training images that will be misclassified on this classifier.
All possible classifiers are considered and the classifier with the lowest ε is chosen as
ht for the stage t.

Initially, the weight wn is set to the same value for every image in ΓN
1 . In subsequent

stages, the weight is influenced by the error calculated in Equation 3.2 for the previous
stage as,

wt+1,n = wt,nβ1−en
t

4Discriminant features of a class are features specific to the class, i.e. features that distinguish this class
from the others.
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βt =
εt

1− εt
(3.3)

where, en is 0 if Γn was correctly classified by the classifier and 1 if not. The εt represents
the error with respect to ht.

After T stages, the classifier is given as,

h(x) =





1

T

∑
t=1

αtht(x) ≥ 1
2

T

∑
t=1

αt

0 otherwise,
(3.4)

where αt = 1/βt. Subwindows of the same dimension as the training images are
sampled from the input image and if the classifier returns 1, then the same is nominated
to be a detected face. The sampling continues at different scales to return all the faces
in the input image.

3.3 Discussion

We observe that there is clearly a noticeable overlap between the approaches. For
instance, edge maps and elliptical structure templates (Sirohey [33]) is also a template
based approach although it is presented as a feature-based approach. Some approaches
can thus be classified into two categories. Further, the boundary between knowledge-
based approaches and template-based is also fuzzy [25]. Template-based approaches
also model the human intuition on the morphological characteristics of a human face.

We note that earlier face detection approaches suffered from the inability to detect faces
of different scales and side profiles. Detecting differently sized faces in the same input
image have since been addressed by many [28, 43, 30, 42, 25].

Typically, to detect faces in the input image, a detection framework uses the sliding
subwindow approach. Image patches (subwindows) are sampled, iteratively, from the
left to right and top to bottom. The dimension of the subwindow is equal to the dimen-
sion of faces in the training images. Effectively, the sliding window finds subwindows
similar to the images that the framework was trained on. The face detector returns a
face or a non-face label for the sampled subwindow. Similarly, the iterative sampling
routine lists all subwindows nominated to contain faces. To account for faces of sizes
different from the dimensions of the training data, the input image is both upscaled
and downscaled. The scaled input images are now searched for face subwindows. A
post-processing step merges the detections to return the location and extent of all the
faces in the input image.
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To address side profiles, Rowley et al. [43] institute a "router" network that investigates
possible orientations of the face to constitute a rotation invariant neural network face
detector. Similar arbitration schemes are required to detect side profiles in other learn-
ing frameworks.

In the next chapter, we discuss feature extraction methods and approaches to face
recognition. Feature extraction methods are either an implicit component of face detec-
tion (as in the case of feature-based approaches) or they serve as an intermediate stage
to face recognition.
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4 FACE RECOGNITION

Many face recognition methods extend the framework of face detection approaches to
learn characteristics that differentiate one identity from another. Face recognition is ap-
plied either for the task of identification or verification. Identification is to match a given
face image with a stored collection of identities and return an identity. Verification is to
check the identity alleged by the given face image using a stored collection of images
for this identity. Thus, in the case of identification, a similar face is searched for in the
collection and the corresponding label is returned. In the case of verification, the given
face image is compared with the faces assigned to the claimed identity and the status
of this comparison is returned.

Prior to the recognition of faces, it is necessary to extract facial characteristics or features.
Feature extraction is the task of reducing the high dimensional training data to a set of
features to investigate properties (morphological, geometric etc.) of the data [49, 45]. We
reintroduce Figure 3.1 here to reiterate the stages of a face processing system discussed
in this chapter.

still video 

or image

Face
Detection

Face 
Recognition

Feature 

Extraction

Figure 4.1: The three stages of a face processing system.

4.1 Feature Extraction

Feature extraction is the task of reducing the high dimensional training data to a set
of features to investigate characteristics (morphological, geometric etc.) of the data [49,
45]. We have, in the previous chapter, reviewed feature extraction steps such as edge
and blob detection, PCA, locating facial features etc. as an implicit component of the
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face detection approaches. Similar features are also used by recognition approaches
to differentiate between faces of different identities. We note that depending on the
recognition approach and its respective requirements, there might be a separate feature
extraction stage in addition to the one in detection.

Features are also extracted from local visual descriptors. We reiterate that local visual
descriptors are representative of local characteristics of images. In Equation 2.2, we
gave a general definition of a filter as:

f (Γ) : Γ #→ %M′

where Γ is the input image and % is the space of real numbers. The value of M′ is
dependent on the filter and is either a scalar (feature) or a vector (feature vector). We
review two filters here. The first of which is the Haar filter and quantizes an image
region to a scalar and the second is the Gabor filter that quantizes an image region to a
vector.

The Haar filter, reminiscent of the Haar basis function [50], quantizes image regions
by adding up the pixel values in that region. A simple two-rectangle feature calculates
the difference between the sum of pixels of two regions as shown in Figure 4.2. A
three-rectangle feature divides the region into three rectangular sections and calculates
the difference between the sum of pixels of two of the divisions and the third. More
features are illustrated in Figure 4.2.

Figure 4.2: Six different Haar filters: the sum of the pixel intensities in the black region
are subtracted from the sum of the pixels in the white region to obtain the
corresponding Haar feature (see text).

A more complex filter is the Gabor filter [51]. Gabor filters capture localization, ori-
entation and spatial frequencies. Gabor filters used by Yang et al. [48] are defined
as

gu,v(z) =
||ku,v||2

σ2 e
−||ku,v ||2 ||z||2

2σ2 e
−||ku,v ||2 ||z||2

2σ2
[
eiku,vz − e

−σ2
2

]
, (4.1)
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where z = (x, y), v is the scale and u is the orientation of the filter. Here, ku,v and σ
are functions of the frequency. Yang et al. [48], for instance, consider the following
definitions:

σ = 2π

ku,v =
π

2
1
√

2
v ei( uπ

8 )

Both u and v can take on a set of values, such as {0, 1, . . . , }. The responses of the
training data to the filter on the different u and v values serve as feature vectors. A few
responses to the Gabor filter are illustrated in Figure 3.6.

4.2 Recognition from Intensity Images

Face recognition is a multi-class problem. If we consider P human identities, then we
have a P class problem. Accordingly, the training data is organized as P collections.
A face recognition approach, typically, is modeled either as a one-on-one problem or
a one-on-all problem. In the former, each identity is paired against another and the
problem is reduced to finding the likelihood of an input face belonging to the first
identity over the second. Here, P(P− 1)/2 classifiers are built. In a one-on-all problem,
each identity is paired against the remaining P − 1 identities and thus, P classifiers
are built. In both of the above, extracted features are either in the intrapersonal or the
interpersonal space of an identity Ωp.

Face recognition is challenging as face images of the same person can have perceptible
disparity, sometimes greater than between face images of different people due to illu-
mination and pose variations. Further, facial structures such as beard and mustaches
make recognition difficult. Approaches to face recognition thus attempt to correctly
learn features from both the intrapersonal and interpersonal space for every iden-
tity using the P class training data. In this section, we review geometric approaches,
a sampling based approach and two general pattern recognition approaches to face
recognition.

Turk and Pentland [39] present a recognition approach that extends the eigenspace
framework [41, 52, 53, 54, 39, 40, 55, 56, 57] previously discussed in Section 3.2.4. We
recall that the eigenspace framework calculates the covariance matrix C for the face
training data and finds the eigensolution to the same. Eigenvectors are then ordered
in a decreasing order of the corresponding eigenvalues. A few of the highest (M′) are
chosen as sufficiently generative of the "face" space. An input image region is mapped
to the face space by considering Γ− ψ and comparing a value extracted from the same
to a threshold. For instance, an input image region Γ is reduced to a vector of weights as
wk = uT

k (Γ− ψ), where uk are unit vectors (and uT
k is the transpose) and k = 1, . . . , M′

are the M′ dimensions considered. We thus obtain a vector νT = w1, . . . , wM′ . In

27



4 Face Recognition

the eigenspace framework for face detection, if the νT was below a threshold, we
considered the image region to be a face.

The framework for recognition is similar. Here, Γ is an input face and νT is calculated
as above. The average face for each identity is calculated as ψp and they are mapped
to a vector as uT

k (ψp − ψ). Like above, νT
p is calculated for p = {1, . . . , P}. From ν

and νp, Turk and Pentland [39] estimate the euclidean distance measure, ||ν − νp||.
This distance measures the similarity of an input face to the identity Ωp in the "face"
space. The Ωp with respect to which the euclidean measure (||ν− νp||) is the lowest is
considered to be the recognized identity.

To account for the possibility of the face belonging to an unknown identity, the eu-
clidean distance is compared with a threshold. If the value is greater than the threshold,
the face is awarded as an unknown. In conclusion to their work, Turk and Pentland [39]
list four possible scenarios that describe the relations between face space and recogni-
tion in terms of the eigenvectors for an input image Γ:

• Eigenvectors are in the face space and close to νp (identity Ωp): the input image
is labeled with p.

• Eigenvectors are in the face space but not close to any νp: the input image is a
face that belongs to an unknown identity.

• Eigenvectors are not in the face space but close to νp: the input image is not a
face.

• Eigenvectors are not in the face space and not close to any νp: the input image is
not a face.

Moghaddam and Pentland [52], however, argue that simplistic Euclidian measures
are insufficient to capture truly discriminate information. They present a probabilistic
similarity measure on the intrapersonal and interpersonal space of an identity Ωp.
Image intensity difference is calculated as ∆ = Γ1 − Γ2. Intrapersonal variations, ΩI ,
are equated to probability distributions drawn from variations in face images of Ωp.
Similarly, interpersonal variations, ΩE, are drawn from variations in faces between Ωp
and the other identities.

The similarity between Γ and a representative face for Ωp, I, is,

S(Γ, I) = P(∆ ∈ ΩI) = P(ΩI |∆) =

P(∆|ΩI) · P(ΩI)
P(∆|ΩI) · P(ΩI) + P(∆|ΩE) · P(ΩE)

where P(∆ ∈ ΩI) is the Bayes maximum a posteriori. The prior probabilities are esti-
mated from dimensionality reduction methods, such as PCA.

28



4.2 Recognition from Intensity Images

Fisher Discriminant Analysis (usually called Linear Discriminant Analysis or LDA) [40,
26], another geometric approach, is drawn from the observation that the traditional
eigenface solution calculates the scatter matrix1 of the complete set of face training
images and does not effectively discard the intrapersonal variations. Essentially, the
eigensolution of this scatter matrix includes between-class (interpersonal) scatter and
within-class (intrapersonal) scatter as well. LDA, thus, optimizes on an eigensolution
that highlights this difference. We rewrite eigenfaces in terms of the scatter matrix as:

Wopt = arg max
W

|WTSW| (4.2)

where S is the scatter matrix of the face training data. W corresponds to wk and Wopt
corresponds to the M′ dimensions chosen. LDA, in contrast to the eigenface framework,
considers two separate scatter matrices, Sw and Sb referred to as the within and between
class scatter matrix. They are calculated as,

Sw =
P

∑
p=1

Pr(wp)Cp

Sb =
P

∑
p=1

Pr(wp)(ψp − ψ)(ψp − ψ)T

where Cp denotes the covariance matrix of the class p. The probability Pr(wp) is a
prior probability of a class and is usually 1/P in practice [26]. To optimize on a set of
eigenvectors that define the between class matrix and within class matrix, an operator
such as a determinant is considered. Equation 4.2 is modified to,

Wopt = arg max
W

|WTSBW|
|WTSWW| (4.3)

where Wopt are the eigenvectors to be considered. Once the eigenvectors are extracted,
any similarity measure such as the euclidean distance (||ν− νp||) can be used for recog-
nition.

A sampling-based approach to recognition was proposed by Jones and Viola [58] that
extends the adaptive boosting framework for face detection [30]. They model the
recognition problem as a comparison between two faces, Γ and I represented as F(Γ, I).
This is referred to as the face similarity function and is defined as,

F(Γ, I) = ∑ f (Γ, I)

1We had previously used the covariance matrix. With respect to Equation 3.1, the covariance matrix and
the scatter matrix are related as S = NC.
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where F(Γ, I) ∈ %. As above, Γ is the input face and I denotes a face of an identity with
respect to which the recognition is carried out. Here, f (Γ, I) is a feature that satisfies
the following constrains,

f (Γ, I) =
{

α if |φ(Γ)− φ(I)| > t
β otherwise

where φ is a quantization function such as the Haar filter, t is a related threshold,
α and β are values which are updated on every stage depending on the number of
misclassified samples, similar to Equation 3.3. The selection of features is accomplished
using a slightly modified boosting model as was presented in Section 3.2.5. Like the
detection approach, stages of binary classifiers are grown, each of which concentrates
on achieving the minimal error defined as a function of the face images recognized
incorrectly by the stage. This is analogous to the error defined in Equation 3.2. The
final classifier takes the form,

F(Γ) = sign

(
T

∑
t=1

ft(Γ)

)

where ft is the classifier chosen for stage t. We reiterate that the classifier is specific
to an identity and the training is with respect to the intrapersonal and interpersonal
spaces of an identity.

Lastly, we review face recognition with support vector machines (SVM) and Log-linear
models. Both approaches consider the pixel values of the training images directly as
a M dimensional feature vector. SVM are general classifiers for pattern recognition
tasks [59, 60]. Typically, SVM find a linear classifier, a separating hyperplane, which
divides a two class problem with the maximum generalization. Consider a two class
training data (Equation 2.1) as D = {(Γn, cp) : n = 1, . . . , N; c = +1,−1}. A hy-
perplane, defined as w · Γ + b = 0, is called the optimal separating hyperplane if it
separates the training data with zero error and the distance between the data and the
hyperplane is maximum [61].

Figure 4.3 depicts the optimal separating hyperplane. The training data elements that
belong to class +1 are represented as circles and the data elements that belong to class -1
are represented as triangles. There are a number of candidate separating hyperplanes,
two of which are drawn in the figure. However, the one that is maximally distant to
both of the classes is chosen as the optimal separating hyperplane. The data elements
closest to this hyperplane are called the support vectors. The distance between the
support vectors and the hyperplane2 is 1/||w||. SVM theorize that such a hyperplane
offers the highest possible generalization.

2Calculated as the distance of a point to the plane w · Γ + b = 0.
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support vectors

1
||w||

Figure 4.3: A separating hyperplane found by SVM. The dotted lines are candidate
hyperplanes. However, the filled line is maximally distant from both the
circles and the triangles. Accordingly the elements closest to the hyperplane
are called support vectors. The distance between a support vector and a
hyperplane is equated to 1/||w||.

A support vector machine must satisfy,

cn|(w · Γn) + b| ≥ 1, n = 1, . . . , N

where the margin between the hyperplane and the data (1/||w||) must be maximized.
However, due to the possibility that there is no hyperplane that perfectly separates the
two class problem, soft margins are allowed with a penalty function C. Support vector
machines are modeled as the following optimization problem [62, 63],

min
w,b,ξ

=
1
2

wTw + C
N

∑
n=1

ξn (4.4)

subject to,
cn(wTφ(Γn) + b) ≥ 1− ξn,

ξn ≥ 0

where ξ is the error on classification. It should be noted that C is the penalty and is
unrelated to c, the class label. To allow for non-linear classification, kernel functions
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are introduced. For instance, the radial basis function on our task is defined as

K(wi, Γj) = exp(−γ||wi − Γj||2),

where γ should be greater than 0. We arrive at suitable values for C and γ using cross-
validation. Support vector machines are used for face recognition using the one-on-one
approach for multi-class data. A total of P(P− 1)/2 SVM are built between every pos-
sible pair of identities. The image is classified with every SVM, the returned identity is
collected for each SVM and a simple voting procedure awards the final identity. For in-
stance, if there are three identities {0, 1, 2}, there are three SVM to build: Ω0|Ω1, Ω0|Ω2
and Ω1|Ω2. If the SVM results with respect to an input face Γ are {0, 0, 1} respectively,
the identity awarded is 0.

Log-linear models are also general pattern recognition classifiers and calculate the
Bayesian maximum a posteriori probability of an input face Γ for every identity. The
scores returned are ranked to return the final identity. The probability of Γ belonging
to an identity Ωm is calculated as

p(m|Γ) =
exp[α + λm f (Γ)]

P

∑
m=1

exp[α + λm f (Γ)]
, (4.5)

where f is a feature of the input face and the α accounts for bias in the model. The
feature, as we mentioned above, are the pixel intensities as an M dimensional vector.
The sum in the denominator in Equation 4.5 is referred to as the normalization con-
stant. The λm is calculated from the corresponding training data using the generalized
iterative scaling algorithm [64]. The generalized iterative scaling algorithm converges
on the distribution of pixel intensities for each class. The score of the input face with
respect to every identity is calculated and ranked to return that with the highest value
as the final identity.

4.3 Databases

We present a brief introduction to a few important training face databases. We also
present important test collections to measure the detection accuracy. Subsequently,
we introduce the FERET evaluation, which is an important evaluation benchmark for
recognition algorithms.
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4.3.1 Training Collections

Most training data collections are common to both detection and recognition. The
individual approach of detection, feature extraction or recognition may have additional
constraints on the format of the training images. For instance, an approach that relies
heavily on the eye feature localization may expect training images where eye contours
are known. For the sake of brevity, we do not present any annotations that might be
available.

• Face Database, Universidad Politecnica de Valencia consists of 40000 face im-
ages [65] with minor illumination variations. The faces are perfectly cropped
from the forehead to the lower jaw.

• MIT Database consists of the faces of 16 people. There are 27 pictures available
per person taken under different conditions of illumination, scale and pose [66].

Figure 4.4: The Yale Face Database [67].

• Yale Face Database consists of the faces of 15 people. There are 11 available
pictures per person taken under different illuminations, with or without glasses
and expressions [67]. A sample set of images are shown in Figure 4.4.

Figure 4.5: The Yale Face Database B [68].

• Yale Face Database B consists of the faces of 10 people. They are taken under 576
different viewing conditions [68]. A sample set of images are shown in Figure 4.5.

• PIE Database consists of the faces of 68 people. They are taken under 60 different
conditions [69].
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• Cohn-Kanada AU Coded Facial Expressions consists of the faces of 100 people.
They are taken with 23 different facial expressions [70].

• AT & T Face Database consists of the faces of 40 people. There are 10 available
pictures per person taken under different illuminations, with or without glasses
and different facial expressions [71].

Figure 4.6: The BioID Face Database [72].

• The BioID Face Database consists of the faces of 23 people. There are a total of
152 high resolution images [72]. A sample set of images is shown in Figure 4.6.

Figure 4.7: The KBSG Face Database.

• KBSG Face Database consists of approximately 30 faces with background per
person of 4 people. The images were taken under typical conditions, with re-
spect to illumination and background, that RWTH-Aachen RoboCup@Home
robots [73] will encounter. A sample set of images is shown in Figure 4.7. The
images include variations in pose, illumination and multiple faces in the same
background. We note that the authors created the database and the images were
captured by the aforementioned robot.
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4.3.2 Test Data Collection

One of the earliest test collections was by Sung and Poggio [42]. The second collec-
tion created by Sung and Poggio consisted of 23 low resolution images with complex
backgrounds and faces occupying relatively smaller areas.

Figure 4.8: A few samples from the CMU test data collection. In addition to frontal pose
face images, the collection includes rotated faces, complex backgrounds and
multiple faces, in close proximity of each other.

Images of comparable complexity are also offered as part of the CMU test collection [74].
The CMU collection has 130 images with 507 frontal face images. The collection also
has a few rotated faces which makes the detection task more challenging. Another
test collection, the CMU Profile Face Images [75] contain 50 images with 223 face
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profiles (most at an angle) also in complex backgrounds. The above collections can be
considered to be real-life scenarios as they created from an variety of sources including
music album covers, family and celebrity pictures, stills from TV shows etc. Figure 4.8
shows a few samples.

4.3.3 FERET Protocol

The FERET protocol is a set of evaluations and it remains to be the most important data
collection for face recognition. The FERET protocol is intended to be a framework that
presents a real-world setting for recognition systems [76, 26].

Figure 4.9: Sample images from the FERET Protocol [76].

Figure 4.9 displays a sample set. The images provided by FERET are available free of
charge. The evaluations measure identification accuracy, false alarms and recognition
rates with pose variations. The images are annotated with the conditions under which
the photographs were taken which include different illumination and pose conditions.
The database also includes images captured under the same conditions but on different
dates to serve as probe images for recognition evaluations.
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In this chapter we detail our framework. Our proposal was towards a unified frame-
work for face detection, recognition and learning of human faces with random forests.

In Section 5.1, we present the theoretical foundations of random forests. In Section 5.2,
we review training data requirements of a learning framework, especially that of a face
processing system. In Section 5.4, we describe the procedure to build random trees
for our framework. We present face detection with random forests in Section 5.5. We
present our arbitration techniques in Section 5.6. We finally present face recognition
and face learning with random forests in Section 5.7 and Section 5.8.

5.1 Theoretical Foundations of Random Forests

In Section 1.2, we mentioned that random forests have distinct advantages over clas-
sical decision trees. In this section, we clarify our claim and present the theoretical
foundations of random forests.

5.1.1 Decision Trees

Classic Decision Trees [18], such as C4.5 and its earlier cousin ID3, recursively grow
trees top down by maximizing the information gain at the nodes [77, 78] with respect
to the training data. Training data is typically of the form,

D =
{(

Γn, cp
)

: n = 1, . . . , N; p = 1, . . . , P
}

(5.1)

where, ΓN
1 are the data elements and cP

1 are the corresponding class labels. Further, the
data elements, Γn, are M dimensional i.e. they have M attributes. C4.5 (and ID3) search
for the attribute that offers maximal information gain at the parent node. This search
is geometrically a hyperplane that best divides the training data and characterized by
any of the M attributes taking on a specific value. If we model an attribute to be a
discrete random variable, X, the information gain of this hyperplane is given with the
Shannon Entropy as
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H(X) = −
P

∑
m=1

p(xm) · log p(xm), (5.2)

where p(xm) is the probability of the division with respect to class m. Thus, the algo-
rithm finds the hyperplane, parallel to an axis in the M dimension, with the lowest
H and divides the training data into two groups. The groups serve as the training
data to the child nodes. The procedure recurs at the child node. Algorithm 1 briefly
summarizes our review.

Algorithm 1 A decision tree
Require: training data collection, D

1: for all attributes do
2: calculate information gain with this attribute as the hyperplane
3: end for

4: choose attribute with highest information gain
5: create a decision node and divide the training collection
6: recur procedure till nodes encounters no more examples

As Russell and Norvig [18, 21] discuss, a serious limitation of decision trees is that of
overfitting. Overfitting is the condition of a grown decision tree that is meticulously
consistent with the training data and yet not learnt "useful" information. The tree has,
in this case, maximized information gain on non-critical attributes due to the high
dimensionality of the training data and the attributes are too general to be of any use.
The shortcoming is critical to our work since image data is very high dimensional.
An unseen example with a few variations will be incorrectly classified. The standard
technique to deal with overfitting is with decision tree pruning. Decision tree pruning
seeks to reduce the redundancy of the decision nodes. It traverses the tree to find nodes
with zero information gain and shortens the tree by removing such nodes. However,
decision tree pruning equivalently reduces the classification accuracy of the decision
tree.

5.1.2 Random Forests

It remains that decision tree classifiers are popular due to their intuitive appeal and
easy training procedures. Pruning procedures, as described above, might increase
generalization accuracy but simultaneously reduce the classification accuracy on the
training samples. There is no classical decision tree approach to increase both classifica-
tion and generalization accuracy [21]. Tin Ho [21] discusses that this limitation lies not
in trees themselves and introduces oblique trees. Oblique trees do not seek hyperplanes
parallel to any axis, as was with classical decision trees. Instead, the two farthest data
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samples are estimated with Euclidian distance measures and connected to each other.
A hyperplane perpendicular to the projection of this connection serves as the division
criteria.

While such hyperplanes avoid redundant attributes, the more important generalization
accuracy does not necessarily improve. To address generalization we need a collection
of classifiers, each of which should be trained independently [22, 21, 1].

Subsequently, Tin Ho introduces a random forest. "Random forests are a combination of
tree predictors such that each tree depends on the values of a random vector sampled
independently and with the same distribution for all the trees in the forest" [1]. A
random tree is built by choosing components from random subspaces [21, 22]. Each
random tree is trained on the entire training data. However, the trees randomize feature
selection and decision criteria. Since we assume the training data to be M dimensional,
there are 2M random subspaces to choose from. Ho further discusses that very high
classifier accuracies can be achieved with an increasing number of trees.

The underlying nature of random forests is that of building classifiers independently.
This makes their construction inherently parallel, allowing us the flexibility to exploit
parallel computing architectures. It is, as a result, referred to as a parallel learning algo-
rithm [22].

We note that classifiers from random subspaces are not the only complex classifiers
possible. Groups of classifiers built with cross-validation, bagging and boosting are all
relevant multiple classifiers. Cross-validation is another approach to address overfit-
ting [18]. Here, the training data is divided into sets of two collections with the learning
framework training on one and an intermediate test procedure measures generalization
errors on the other. Further, while bagging [19, 78] allows training of different classifiers
using overlapping and randomized subsets of the training data, boosting [21, 79, 22]
builds stages of classifiers with each stage concentrating on the samples misclassified
with the previous stage. We have previously, in Section 3.2.5 and Section 4.2, presented
approaches that use boosting to detect faces and recognize faces respectively.

We summarize and note that random forests create a large number of independently
trained classifiers by the random sampling of rectangular features. Breiman [1] presents
a discussion on the convergence of random forests and why overfitting will not occur.
While an exhaustive theoretical review of this work is beyond the scope of this thesis, it
is interesting to note that the generalization error converges to a limit as the number of
trees in the forest increases. In the next section, we review two important parameters
that directly influence the generalization error of a random forest.
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5.1.3 Generalization Error

In this section, we present a brief summary of the mathematical treatment on random
forests by Breiman [1]. The principal objective is to obtain a relation for the generaliza-
tion error of random forests. Breiman derives an equation for the generalization error
in terms of the strength of each random tree and the correlation between them.

Any application of random forests is characterized by a random vector θ that samples
the training data. For instance, in the approach taken by Marée et al. [5, 6, 9, 10], θ
represents a random rectangle. Amit et al. [80] build classifiers with a random selection
of binary geometric features. The θ, in this case, is an integer l such that l ∈ {1, . . . , L}
where L is the number of geometric features considered. A random tree is a classifier
defined as h(x, θk) where k ∈ {1, . . . , K} is the index of the tree in the forest and x is the
input vector. The value y(k) = h(x, θk) is the class label of x as determined by random
tree k. We note that the space of input vectors is X and the space of class labels is Y. The
random forest, a collection of classifiers, is correspondingly defined as,

{h(x, θk); k = 1, . . . , K}. (5.3)

It is important to note that each θk represents an independent sampling and the sam-
pling is from the same distribution. This implies that the random features chosen for
our approach are taken from the same training data for each tree and the features are
independently chosen from each other. The random trees defined cast a vote each and
the votes are combined to return the class label y.

Let us now consider any general classifier hk(x). For an ensemble of the classifiers
{h1(x), h2(x), . . . , hk(x)}, Breiman introduces the margin function as:

mg(X, Y) = akI(hk(X) = Y)−maxj +=Y (akI(hk(X = j)) (5.4)

where a represents the average and I the indicator function. The indicator function
returns 1 if the relation specified holds and 0 if not. For instance, I(hk(X) = Y) returns 1
in case a classifier hk(X) returns the correct class of the input vector. Thus, Equation 5.4
simply tells us by how much, on an average, does the classifier return the precise class
label compared to the most common incorrect class label.

The generalization error is modeled using the margin function as,

PE∗ = PX,Y (mg(X, Y) < 0) (5.5)

which is the probability over the space of the input vectors and class labels.

Breiman substitutes the definitions in the random forest framework. The margin func-
tion, now termed mr, is defined as,

mr(X, Y) = Pθ (h(X, θ) = Y)−maxj +=Y (Pθ (h(X, θ) = j)) (5.6)
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where θ is the random sampling of rectangular features as defined above. It is clear
that mr is closely related to the generalization error. Breiman thus defines the strength
of the ensemble (Equation 5.3) as,

s = EX,Y (mr(X, Y)) . (5.7)

where E is the mathematical expectation. The mean correlation ρ between the classifiers
is derived as a function of E, the standard deviation and the random vector θk. Breiman
obtains the upper bound on the generalization error as:

PE∗ ≤ ρ
(1− s2)

s2 . (5.8)

The equation above gives us a clear indication that the generalization error is influ-
enced by two factors, the correlation between the random trees and their individual
strengths. Further, the mean correlation is related to the independence of θk and thus,
the generalization error is directly proportional to the randomization and the indepen-
dence of θk. Breiman further derives that as the number of random trees becomes large
(tends to infinity), the generalization error converges to a limit. Although in practice,
we do not intend to grow an infinite number of random trees, growing as few as 10
trees presents very competitive results [1, 7, 21, 22, 11, 9, 6, 10, 12, 41].

5.1.4 Conclusion

We summarize, briefly, the benefits of growing random forests with a random sampling
of features. The advantages are [16, 1]:

1. Straightforward Learning. The random sampling of features does not impose
any explicit template or model. A generic algorithm learns characteristics directly
from the training data.

2. Local Representation. The randomly sampled features directly analyze the im-
age region without explicitly extracting geometric primitives such as edges.

3. Classification with Occlusion. As discussed in Chapter 2, approaches that use
random forests are able to classify and detect partially occluded objects since not
all the sampled regions need to be accurately classified. The voting procedure
allows for a few sampled subwindows to be falsely classified.

4. Parallelization. Equation 5.8 emphasizes the independent training of random
trees and as a result, parallel architectures can be used to grow each tree of a
random forest.

5. Fast Training Time. Breiman discusses the fast training time of random forests.
As random features are selected, no computational time is spent on searching
for the most discriminative attribute. Thus, at each node only a single decision
criterion is instantiated.
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6. Comparable Accuracy. Breiman also discusses that random forests perform fa-
vorably in comparison to adaptive boosting based approaches. This is attributed
to the fact that multiple classifiers are built, each with a decent classification
accuracy.

7. Low Generalization Error. As we discussed in Section 5.1.3, the generalization
error tends to a limit as the number of random trees grown increases.

8. Integrated approach for tasks. Creating a collection of learned features and
querying them is a part of the same framework. This factor is influential in pre-
senting a unified approach to detection and recognition as we discuss in Chap-
ter 5.

5.2 Training Data Requirements

A learning framework is characterized by two entities: a learning algorithm and train-
ing data. The learning framework describes a procedure for extracting meaningful
information from the training data. The training data, correspondingly, must be repre-
sentative enough for all the classes. To increase robustness and the capability to work
in real life scenarios, annotated training data with real life backgrounds are included.
Thus, the algorithm is trained to classify, detect or recognize objects in spite of the
complex backgrounds encountered when deployed.

Annotations are dependent on the problem definition. Typically, prospective training
data for face detection are images with faces that cover the entire image as in case of
Figure 4.4 or Figure 4.5. However, faces in bigger backgrounds as in case of Figure 4.6
or faces in complex backgrounds as in Figure 4.8 can also serve as training data. Anno-
tations, here, detail the exact location and extent of every face in the images. Further,
training images for face recognition systems require that the faces are labeled with the
identity of the person.

We note that for face detection or recognition systems that principally work with facial
features such as eyes and noses, an additional requirement is imposed on the training
data. Training images here are annotated with the position and extent of relevant
features.

As described in Equation 5.1, the training data is usually of the form

D =
{(

Γn, cp
)

: n = 1, . . . , N; p = 1, . . . , P
}

,

where ΓN
1 represent the N training images, cP

1 represent the P class labels. The image
Γn is considered to be M dimensional. We further denote each pixel value with Γn(x, y)
which denotes the pixel intensity at the (x, y) coordinate of Γn.
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Face detection is a two class problem: to identify if a sample is a face or not a face. The
training images for the face detection, accordingly, are divided into two: face images
and background images. Any image that does not contain faces can effectively consti-
tute the background images collection. This may include domestic objects such as bikes
and cars, animals, and any typical background such as walls and furniture. Typically,
the size of the non-face collection exceeds the face collection in the training data for
face detection. This is attributed to the fact that a larger group of entities constitute
as non-faces. As low false positives is usually desired, better performance is achieved
with a more comprehensive non-face collection. Face recognition, on the other hand, is
modeled as a P class problem with one class assigned to each of the P identities. The
training images for face recognition are, accordingly, divided into P collections.

5.3 Learning Framework

In this section we discuss our learning framework. The learning framework details
the randomization of decision criteria, the filter and features used and an efficient
representation for computation that we borrow from Viola and Jones [30].

5.3.1 Decision Criteria

A randomized decision criterion consists of a randomly sampled rectangle, i.e. of random
dimensions and at a random location, and an accompanying randomly chosen threshold.
We present an overview of our learning framework and the decision criterion.

Our learning framework is comprised of growing random trees from the labeled train-
ing data. Random trees are recursively built in a top-down manner. At each node t, the
training images at the node Γt are split into two groups, Γl and Γr. The groups corre-
spond to the training images at the left and right branches of the node respectively [12].
The split is the result of a decision criterion acting on quantized random patches.

The split is disjoint with Γt = Γl ∪ Γr and Γl ∩ Γr = Ø. The nodes tl and tr correspond
to the left and right nodes of t. The image collections Γl and Γr are now the training
data at tl and tr respectively and the procedure is repeated. The tree is grown until the
image collection at the node consists of images from only one class. For instance, in the
case of the two class face detection problem, the training images are recursively split
until the node has either only faces or only non-faces. An alternate growth stopping
criterion are the number of nodes that the tree is allowed to grow. This criteria is borne
out of the need to constrain memory requirements when it is known in advance or
experimentally estimated that a specific number is sufficient for a desired accuracy.
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The framework randomly samples the training images. Random sampling signifies that
a patch whose position and extent is completely random (but within the dimensions of
the training images) is considered. Needless to say, the position and extent is the same
in all the training images at a particular node. However, if the training images are not
all of the same dimensions, either all of them are rescaled to K× L (where K ∗ L = M)
or the position and extent is chosen relatively in every image with respect to an M
dimensional image. The patch selected is represented as {xt, yt, ht, wt} where xt is the
x-coordinate of the top left corner of the patch, yt is the y-coordinate of the top left
corner of the patch, ht is the height and wt is the width of the patch.

The framework selects a random threshold. The threshold is also randomly chosen in
the range of minimal and maximal values that a quantized patch can take. Mossmann et
al. [12] and Marée et al. [9] refer to random trees with thresholds also chosen randomly
as extremely random trees. We however exclude the qualifier for the sake of brevity.
We denote the threshold for the node t as θt. We summarize the above as a tuple,
Tt = {xt, yt, ht, wt, Γl , Γr, θt} and refer to it as a test. Here, Γl and Γr are not specific to
a test, but since we generally instantiate one test per node t, we consider all of them
together.

We note that the threshold can also be a range as opposed to a single number. Instead
of probing if the quantized scalar value exceeds θt, we could assert if the value lies in
(θt1, θt2). However, this is a minor detail and as the thresholds are randomly chosen,
the number of thresholds is not important.

5.3.2 Features

The patches sampled thus are quantized as a scalar quantity or a lower dimensional
vector quantity. The purpose of quantization is to extract meaningful information and
execute operations, such as a test Tt defined above. A filter is applied on the patch and
the output of the filter is the feature. Earlier, in Section 4.1, we discussed Haar filters
and Gabor filters. A Haar or a Gabor filter applied on a region of the image gives us
the Haar feature or the Gabor feature of that region.

The desired properties of any feature is that it contains both generative and discrimina-
tive information with respect to the training data. Generative information are proper-
ties that can reconstruct the image, such as the M′ dimensional vector in PCA. Discrim-
inative information between two classes are properties that highlight the differences
between the classes. Haar features are generative and discriminative [54]. In the adap-
tive boosting based face detector [30], Haar filters successfully learnt discriminatory
features between the face and non-face class. Tao et al. [81] discuss that bases from a
binary subspace can be used as generative components of images. Haar features can
be considered to be binary bases [54, 30] and hence contain generative information.
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The Viola and Jones [30] face detection system offers one of the best performances to
date. Although they train on Haar features, they review that Haar features are not
that powerful. They discuss the strengths of more complex features such as steerable
filters [82]. Steerable filters are called so because they can record responses at any
arbitrary orientation and thus, it is possible to "steer" the filter to a desired orientation.
This property is extremely advantageous. In comparison, Haar features are usually
designed to only capture horizontal, vertical and diagonal orientations as shown in
Figure 4.2. However, Haar features offer computational simplicity. As we build a
large number of random trees with sampled patches of different dimensions, it is
convenient to use features that can be computed easily. Further, we borrow the image
representation called the integral image introduced by Viola and Jones [30]. We describe
the integral image computation in the following section. This representation allows for
very fast computations of Haar features.

It is interesting to note that Gabor features are reported to work well for face recogni-
tion [83]. However, many Gabor features are redundant. Yang et al. [48] use adaptive
boosting to single out the discriminant ones as mentioned in Section 4.2. Gabor features
in general do not offer the computational simplicity of Haar features and hence, we
only consider Haar features for our learning algorithm.

To reiterate, Haar filters are reminiscent of Haar wavelets which are ortho-binary in
nature. Haar filters usually divide a patch into rectangular components, designating
alternate regions to either +1 or -1. The pixels in the regions are aggregated according to
the above designation. As shown in Figure 4.2, a two-rectangle feature considers the sum
of pixels in the black region subtracted from the sum of the pixels in the white region.
A three-rectangle feature considers the sum of pixels in the black region subtracted from
the sum of pixels in the white regions. A four-rectangle feature considers the sum of
pixels in the diagonal black regions subtracted from the sum of pixels in the diagonal
white regions. Figure 4.2 depicts a few Haar filters.

5.3.3 Integral Images

Haar features can be computed quickly using the image representation introduced by
Viola and Jones [30]. The integral image is a scalar for each two dimensional pixel
location. If the pixel is (x, y), the integral image is calculated as

ii(x, y) = ∑
x′≤x,y′≤y

Γn(x, y), (5.9)

where ii(x, y) is the integral image. We note that we use a left hand coordinate system,
i.e. the origin (0, 0) is the top left corner of the coordinate system. The integral image
is calculated iteratively in a single pass using the following recursive definition [30],

s(x, y) =
{

s(x, y− 1) + Γn(x, y) if y += 0
Γn(x, y) if y = 0 (5.10)

45



5 Framework

1 2

3 8

A B

C D

56

7

Figure 5.1: The sum of pixels in the rectangle A is the integral image at location 1. The
sum of pixels in the rectangle B is 2− 1. The sum of pixels of A + C is the
integral image at 3. The sum of pixels in D is 8 + 6− 7− 5.

ii(x, y) =
{

ii(x− 1, y) + s(x, y) if x += 0
s(x, y) if x = 0 (5.11)

where s is the sum of pixels.

In Figure 5.1, a typical computation is illustrated. The figure denotes an integral image
representation. As we see in the figure, the sum of pixels for an arbitrary region can be
calculated with only four array references. This integral image calculation needs to be
done only once for an image, irrespective if it is used for training or as a test image.

5.4 Growing Trees

As discussed earlier, the tree is recursively grown with Γt at node t using the test
Tt = {xt, yt, ht, wt, Γl , Γr, θt}. Before we review how the features are chosen, we consider
the simple two-rectangle feature as shown in Figure 4.2. Here, (xt, yt) represents the
top left corner of the sampled patch. Figure 5.2 lists the remaining coordinates.

The sum of pixels in the black region of the image patch is obtained by evaluating the
values in the integral image as,

s(black) = (xt + wt, yt + ht) + (xt +
wt

2
, yt)− (xt +

wt

2
, yt + ht)− (xt +

wt

2
, yt).
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(xt, yt) (xt +
wt

2
, yt) (xt + wt, yt)

(xt, yt + ht) (xt +
wt

2
, yt + ht) (xt + wt, yt + ht)

Figure 5.2: The coordinates of a two-rectangle haar feature for an image patch.

Similarly, the sum of the pixels in the white region of the image patch is obtained by
evaluating the values in the integral image as,

s(white) = (xt +
wt

2
, yt + ht) + (xt, yt)− (xt, yt + ht)− (xt +

wt

2
, yt).

The Haar feature is s(black)− s(white) as described previously.

As the threshold θt of every test is chosen in a range of numerical values, the Haar
features must be appropriately mapped to this range for correct comparisons. A simple
solution, for instance, is if we choose the range of thresholds to lie in [0, 1]. The Haar
feature calculated as above can be scaled to values in [0, 1] using the dimension of the
rectangular region as a parameter. This process if referred to as normalization. The
normalized Haar feature is,

Normalized Haar Feature =
s(black)− s(white)

ht ∗ wt ∗ 255
,

where it is assumed that the pixel intensities are in the range [0, 255].

The normalized Haar feature of every image in Γt is compared with θt. If the value
exceeds the threshold, it is grouped with Γl and with Γr otherwise. The left and right
branches of node t inherit Γl and Γr respectively.

Up to this point in the discussion, we did not review which of the Haar filters are
used at a node t. It is evident that the learning framework must choose features that
effectively divide the images at the node to act as a decision tree. As we have a set
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of Haar filters, we use the Shannon Entropy to select one. The entropy of a split is
calculated as,

H = −∑
P

p · log p, (5.12)

where H is the entropy, p is the probability of a class with respect to the division and is
calculated for every class in {1, . . . , p}. In the case of the face detection problem,

p f =
number of faces in Γl
number of faces in Γt

pn f =
number of non-faces in Γl
number of non-faces in Γt

where Γl and Γt are as above, p f is the probability of the face class with respect to the
division and pn f is the probability of the non-face class with respect to the division. For
each normalized Haar feature the entropy is calculated with respect to θt. We choose
the Haar feature with the smallest value for H. A Haar filter that proves most effective
at a node is highly dependent on the training images at the node. Thus, there is usually
no single Haar filter that is effective for every node of the random tree. We note that we
can estimate probabilities with respect to Γr with an completely identical treatment.

Figure 5.3 illustrates the growth of a random tree. At the node t, there are four images,
two faces and two background images. A two-rectangle Haar filter is chosen (corre-
sponds to the region around the eye in the face images). The Haar filter is characterized
by the sum of the pixels in the left component subtracted from the sum of the pixels
in the right component. As the pixel values in the left and right eye is very similar,
the Haar feature leads to a very small value (close to zero). Similarly, the first back-
ground image also has a homogenous appearance in the region. In comparison, the
second background image has considerable disparity. On comparing the feature with
threshold θt, the first three images are separated. The last image is placed in a leaf node
and does not undergo further growth. Another two-rectangle Haar filter is randomly
sampled at node t + 1. However, the feature does not prove discriminatory enough to
divide the images at the bin. A two-rectangle filter at node t + 2 and the threshold θt+2
separate the faces from the background image. As both children of node t + 2 contain
images from only a single class, they remain as leaf nodes and the growth is stopped.

In the figure above, the growth is accomplished in 4 levels of the tree. In the actual
execution path, this may be different. Haar features that separate image classes may
be sampled after an arbitrary number of levels. Further, the threshold θt in the figure
correctly separated similar numerical quantities. In an extremely random tree, the
thresholds need not account for a separation even in the case of quantized features that
are linearly separable. We can thus expect arbitrary divisions at arbitrary depths. As
discussed before, the randomization affords us high generalization accuracy.

However, at the cost of generalization accuracy, the tree might be grown to large depths
on redundant and non-discriminatory random patches. To circumvent this problem,
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> θt

> θt+1

> θt+2

Figure 5.3: The growth of a random tree. At node t, there are 2 faces and 2 background
images. A Haar feature is compared with θt for each image. The process is
repeated until images of only one class are in the leaf node (see text).

instead of considering just a single test at a node, we consider an array of tests. In
this manner, we include randomization and additionally shorten tree growth (which
leads to a reduction in training and testing time). Thus, we augment the random forest
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growth procedure by considering Tt[L], where L is the number of tests initialized at
each node. Deselaers et al. [14], for instance, set L = 200. We set L = 200 as well.

T1 T2 T3

Figure 5.4: Random forest from random subsampling. Trees T1, T2 and T3 are grown
independently.

A collection of trees is grown as outlined. Each tree can either be built using the
entire training data or random subsets of the same. The trees in the forest are built
independently. The forest, thus, is implicitly capable of exploiting parallel architectures.
Figure 5.4 illustrates the growth of a random tree. We note that the growth is analogous
to Figure 2.1. The foremost disparity is the rescaling of sampled subwindows by Marée
et al. [5, 6, 9, 10].

We summarize our approach in Algorithm 2 and Algorithm 3. In the next section, we
discuss the detection of faces with this framework. A tree grown with our framework
to 100 nodes is presented in Figure 5.5. Every node in the tree is characterized by three
fields: the node index, composition and entropy value of the best test chosen. The tree
is trained on a five class training data or P = 5 or c = {0, 1, 2, 3, 4}. The root node
is thus {0, (9, 7, 8, 9, 9), 1.639644}, where the node index is 0, the number of training
images for class 0 is 9, the number of training images for class 1 is 7 etc. and the entropy
of the best test found is 1.639644. As the tree is grown breadth first, the last node grown
is the right and bottom most leaf labeled as "node 100" in the figure. We also observe
that for the above training data, 100 nodes prove almost sufficient to converge on tests
that grow the tree to point of images from only one class remaining in the leaf nodes. A
skeleton of the growth of the same tree is presented in Figure 5.6. The figure illustrates
the top-down approach (the direction of the arrow) and the skew of the growth. The
latter is dependent on the randomized decision criterion chosen at various depths of
the random tree.
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0 9,7,8,9,9 1.639644

1 7,0,0,0,0 1.584963 2 2,7,8,9,9 1.737926

3 7,0,0,0,0 1.584963 4 0,0,0,6,0 1.672933 5 2,7,8,3,9 1.836175

6 7,0,0,0,0 1.584963 7 0,0,0,6,0 1.672933 8 0,0,5,0,0 1.770951 9 2,7,3,3,9 1.918296

10 7,0,0,0,0 1.584963 11 0,0,0,6,0 1.672933 12 0,0,5,0,0 1.770951 13 1,0,1,3,8 1.716917 14 1,7,2,0,1 1.753434

15 7,0,0,0,0 1.584963 16 0,0,0,6,0 1.672933 17 0,0,5,0,0 1.770951 18 0,0,0,3,8 1.626689 19 1,0,1,0,0 2.235926 20 0,7,2,0,0 1.694988 21 1,0,0,0,1 2.235926

22 7,0,0,0,0 1.584963 23 0,0,0,6,0 1.672933 24 0,0,5,0,0 1.770951 25 0,0,0,1,8 1.554049 26 0,0,0,2,0 2.128085 27 1,0,1,0,0 2.235926 28 0,7,0,0,0 1.584963 29 0,0,2,0,0 2.128085 30 1,0,0,0,1 2.235926

31 7,0,0,0,0 1.584963 32 0,0,0,6,0 1.672933 33 0,0,5,0,0 1.770951 34 0,0,0,0,8 1.505876 35 0,0,0,1,0 2.251629 36 0,0,0,2,0 2.128085 37 1,0,1,0,0 2.235926 38 0,7,0,0,0 1.584963 39 0,0,2,0,0 2.128085 40 1,0,0,0,1 2.235926

41 7,0,0,0,0 1.584963 42 0,0,0,6,0 1.672933 43 0,0,5,0,0 1.770951 44 0,0,0,0,8 1.505876 45 0,0,0,1,0 2.251629 46 0,0,0,2,0 2.128085 47 1,0,1,0,0 2.235926 48 0,7,0,0,0 1.584963 49 0,0,2,0,0 2.128085 50 1,0,0,0,1 2.235926

51 7,0,0,0,0 1.584963 52 0,0,0,6,0 1.672933 53 0,0,5,0,0 1.770951 54 0,0,0,0,8 1.505876 55 0,0,0,1,0 2.251629 56 0,0,0,2,0 2.128085 57 1,0,1,0,0 2.235926 58 0,7,0,0,0 1.584963 59 0,0,2,0,0 2.128085 60 1,0,0,0,1 2.235926

61 7,0,0,0,0 1.584963 62 0,0,0,6,0 1.672933 63 0,0,5,0,0 1.770951 64 0,0,0,0,8 1.505876 65 0,0,0,1,0 2.251629 66 0,0,0,2,0 2.128085 67 1,0,1,0,0 2.235926 68 0,7,0,0,0 1.584963 69 0,0,2,0,0 2.128085 70 1,0,0,0,1 2.235926

71 7,0,0,0,0 1.584963 72 0,0,0,6,0 1.672933 73 0,0,5,0,0 1.770951 74 0,0,0,0,8 1.505876 75 0,0,0,1,0 2.251629 76 0,0,0,2,0 2.128085 77 1,0,1,0,0 2.235926 78 0,7,0,0,0 1.584963 79 0,0,2,0,0 2.128085 80 1,0,0,0,1 2.235926

81 7,0,0,0,0 1.584963 82 0,0,0,6,0 1.672933 83 0,0,5,0,0 1.770951 84 0,0,0,0,8 1.505876 85 0,0,0,1,0 2.251629 86 0,0,0,2,0 2.128085 87 1,0,1,0,0 2.235926 88 0,7,0,0,0 1.584963 89 0,0,2,0,0 2.128085 90 1,0,0,0,1 2.235926

node91 node92 node93 node94 node95 node96 node97 node98 node99 node100

Figure 5.5: A sample tree grown with our framework to 100 nodes. Each node is char-
acterized by three fields: node count, training data composition, entropy
value (see text).

Figure 5.6: A sample skeleton of the growth of a random tree. It corresponds to the
random tree in Figure 5.5.

5.5 Face Detection

The detection of human faces in an input image is achieved using a sliding window
approach. We recapitulate that each node and the corresponding test is characterized
by four training data specific parameters, xt, yt, ht and wt. Each parameter is in the
range of the dimensions of the training data. In accordance, the forest learns features
defined by a specification in terms of pixel size. We consider, as before, the training
images to be M dimensional.

In a trivial case, the input image consists of M dimensional faces in a background. The
task of face detection is reduced to returning the top left corner of each face. Let us
consider a M dimensional region i′. Ideally, a random tree is grown until the leaf nodes
have images from only a single class. Propagating i′ down the tree is a classification
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Algorithm 2 Random Tree(Γn)
Require: Training Images, D = {(Γn, cp); n = 1, . . . , N; p = 1, . . . , P}.

1: let the current node be t (start with the root node)
2: if Γt contains images from only one class OR a stopping condition is reached then
3: return t
4: else
5: choose a test, Tt = {xt, yt, ht, wt, Γl , Γr, θt}
6: split Γt as Γl and Γr such that Γl ∪ Γr = Γt and Γl ∩ Γr = Ø
7: let tl = Random Tree(Γl) and tr = Random Tree(Γr)
8: let tl and tr be the left and right nodes of t respectively
9: return t

10: end if

Algorithm 3 Choose a Test
Require: |Γt| > 0.

1: instantiate Tt[L], such that each test, Tt[l] = {xt, yt, ht, wt, Γl , Γr, θt}
2: for each Tt[l] do
3: for each considered Haar feature do
4: for each image in Γt do
5: calculate feature using integral image
6: normalize feature as s(black) - s(white)
7:
8: if s(black)− s(white) > θt then
9: group the image in Γl

10: else
11: group the image in Γr
12: end if
13: end for
14: calculate the entropy as H = −∑

P
p · log p

15: end for
16: choose the Haar feature with lowest H
17: end for
18: choose the test with lowest H
19: return Tt[l]

task. At every node, the test at that node extracts the relevant Haar feature and com-
pares it with the threshold. As the Haar features are discriminatory, if i′ is a face, then it
will be separated from the majority of the non-face images down the tree. If it reaches
a leaf node with only face images, i′ is nominated as a face.
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Propagating a region of an image on a random tree trained on face and background
images returns an estimate of the likelihood that the region is a face. Thus a region
classified into a leaf node with only face images is nominated as a face. A region
classified into a leaf node with only background images is nominated as a background
image.

However, a random tree need not be necessarily grown till the leaf nodes are composed
of images from only class. Memory or time constraints are influential parameters for the
learning framework. It is to be noted that the depth of tree is directly proportional to the
time taken for classification as each node represents a test and a comparison. Growing
extremely deep trees implicitly impacts training and classification time. Further, we
even grow a collection of trees and in accordance, the growth of the tree is limited to a
heuristically chosen node count or depth count.

In accordance, if a leaf node includes images from both classes, the likelihood of the
node to be nominated as a face is referred to as the Face Map Threshold (FMP) and is
defined as:

Face Map Threshold =
Γ f

Γ f + Γn f
(5.13)

where FMP is the probability of a face in the node, Γ f is the number of faces in the leaf
node and Γn f is the number of non-faces in the same. If i′ is propagated to such a leaf
node, a global criterion asserts if the FMP calculated is high enough to nominate i′ a
face.

The algorithm to detect faces in an input image is thus to iteratively sample M di-
mensional windows starting from the top-left corner until the bottom-right corner and
propagate them on the tree. Using the FMP, we nominate if the subwindow is a face or
a non-face. The iterative sampling thus examines ∑Iw−K

1 ∑Ih−L
1 subwindows, where Iw

and Ih represents the width and height of the input image. Algorithm 4 summarizes
our review.

In the algorithm, the iterative offsets for the sampling procedure is 1, i.e. e and g pro-
ceed in steps of 1. To reduce computation time, the offsets in the X and Y direction
could be increased from 1 to 2 or more. In accordance, if a window is sampled at (0, 0),
then the subsequent window sampled is located at (2, 0). Once all the windows are
sampled in the current row, the next window sampled is at (0, 2).

We have, presently, only discussed detection in the input image under the assumption
that the dimensions of every face in the input image is equal to M. However, in real
life scenarios, the extent of a face can take on arbitrary dimensions. Further, the same
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Algorithm 4 Sliding Window for Detection
Require: Trained tree, t and an input image, i′ (K× L).

1: for e from 1 to Iw − K in steps of 1 do
2: for g from 1 to Ih − L in steps of 1 do
3: extract window of dimensions M at (e, g)
4: propagate window down the trained tree till a leaf is reached

5: calculate
Γ f

Γ f + Γn f

6: if value > global threshold then
7: return face found at (e, g)
8: end if
9: end for

10: end for

input image can include faces of different sizes due to the distance from the camera. To
accomplish detection in such images, we conduct a multi-resolution analysis. The input
image is scaled by different factors and the algorithm outlined above is repeated at
each scale. Note that the regions sampled are always M dimensional. The principal
motivation for multi-resolution analysis is the observation that by downscaling and
upscaling an input image, a face at some scale will be K× L.

The detection process so far will result in a large number of "nominations" for the
same face as every sampled subwindow a few pixels in the vicinity of a face will be
nominated. Further, the multi-resolution analysis will increase both the number of
nominations for a face and the extents. A good post-processing step is crucial. We
review post-processing in depth in Section 5.6.

As a concluding remark, scaling the input image is not the only way to detect faces of
different sizes. The sampled windows and the tests can be scaled instead. However,
scaling each test in a depth first traversal of the tree is much less efficient than scaling
the image just once.

5.6 Post Processing

Given the large number of prospective detected faces, arbitration is crucial for inter-
pretable and usable results. There are three types of prospective results:

1. detections returned for a scale s by a random tree,

2. detections returned for all scales {1, . . . , S} by a random tree and

3. detections returned for all scales {1, . . . , S} by the random forest.
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Our arbitration procedure considers the prospective results by post-processing detec-
tions in the same order as listed above. That is, we first arbitrate detections returned
for a scale and repeat the same for each scale. Subsequently, we arbitrate detections
across all possible scales to obtain a set of detections for the tree. Voting procedures
merge the detections of each tree in the random forest.

A detection d is characterized by a location and the bounding box such that de =
{xe, ye, we, he}, where e is the index of the detection and e ∈ {1, . . . , E}. The bounding
boxes from the multi-resolution analysis are downscaled or upscaled proportionately
so as to be applicable to the original input image. Correspondingly, the scaled detection
d′e is

d′e =
{

xe

s
,

ye

s
,

we

s
,

he

s

}
, (5.14)

where s is the scale factor.

For each scale, we collect the detections as rs = {d′1, d′2, . . .}. If at the scale of 1 three
faces are detected, we have r1 = {d1, d2, d3}. If at the scale of 1.5 two faces are detected,
we have r1.5 = {d′1, d′2} where d′1 and d′2 are calculated using Equation 5.14 with s =
1.5.

The detections of the random tree are collected as {rs : s ∈ S}, where S is the set of
scales considered. Combining the detections is a non-trivial task as it is difficult to
define a global heuristic that works with different types of input images [43].

The foremost step to the merging of detections is to define a neighbor range. The neigh-
bor range of a detection window de is a geometric region in the vicinity of de such that
all detection windows that overlap with the region are considered neighbors of de. We
enumerate two strategies, also illustrated in Figure 5.7, to identify neighbors:

• Calculate the point of intersection of the diagonals of the bounding box and
consider the point to be a center of a circle of diameter 2R. The value of R can
either be a fixed constant or can be related to the dimensions of the bounding box
considered. All detection windows that overlap with the circle are neighbors.

• With respect to de, all detection windows that overlap with the rectangle are
neighbors.

Following the enumeration of neighbors, the detection windows are merged. A general
definition of merging is a weighted combination of all the neighbors,

dwavg =
{

∑ α · x
∑ α

, ∑ α · y
∑ α

, ∑ α · w
∑ α

, ∑ α · h
∑ α

}
(5.15)

where dwavg is the merged detection window. For instance, if we consider a simple
average of neighbors (Nd), we can rewrite Equation 5.15 as

davg =
{

∑ x
Nd

, ∑ y
Nd

, ∑ w
Nd

, ∑ h
Nd

}
,
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Figure 5.7: The search for neighboring detection windows by considering either all
overlapping detection windows or a circular region. The neighbors are
calculated with respect to the central square.

where davg is the merged window.

The value of α in Equation 5.15 can be a function of any characteristics of the detection
window. For instance, the detection windows are arranged in decreasing FMP values
and the detections with the lowest FMP values are discarded completely (α = 0). The
weight can also be a function of the extent of the bounding box. To exemplify, we pick
the biggest bounding rectangle in the neighborhood. Although this method is simple,
we show that it performs well on a broader test set in Chapter 6.

The detection windows from all the trees in the random forests are merged subse-
quently. We enumerate two strategies to merge,

• A detection window is nominated for the final result if and only if there is a corre-
sponding detection window in the neighborhood in a majority of the remaining
random trees. This is a weaker equivalent of the AND operator and shares simi-
larity to simple voting scheme in classification tasks by Breiman [20, 19, 1], Marée
et. al [9, 5, 6, 10] and others discussed in Chapter 2. This heuristic addresses a
way to decrease the number of false positives as a detection is nominated only if
the majority of trees, each with an individual generalization, appoint a region as
a face.
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• Detection windows are simply collected from all the random trees. They are re-
tained as is with the notable exception of removing duplicates. This is equivalent
to the OR operator. This heuristic address low detection accuracy. If a face is
not detected on one tree for reasons such as overfitting, then it is probable to be
detected by another random tree.

The final set of windows are returned as the list of detected human faces.

5.7 Face Recognition

As discussed in Chapter 4, the task of recognition is either that of identification or verifica-
tion. Identification is the task to match a new face with a stored or trained collection of
identities and return the identity of this face if it exists. Verification is the task to check
if the identity alleged by the input face is correct. We model identification and verifi-
cation as confidence measures based on the calculation of the identity likelihood. The
identity likelihood is a probabilistic estimate of a face image belonging to an identity
and shares similarity to the FMP discussed previously.

Our recognition framework is a classification approach. The detection phase is as-
sumed to correctly return the location and extent of every face in the input image. The
faces are scaled to K× L and propagated on a random tree in the forest1. To recognize
the identity, the random tree is grown further till the leaf bins contain faces from only
a single identity. Equivalent extensions must be carried out for all the random trees in
the forest. As with detection, the identity present in the leaf node is nominated as the
identity of the face.

To address the possibility that a face belongs to an unknown identity, we include an
additional class in the training data. This class contains face images of many strangers.
If the input face is propagated to a leaf node with images from this class, then the face
is nominated to be unknown.

However, growing trees to the point where leaf nodes are composed of faces from only
a single identity maybe extremely time consuming. As random regions are sampled, a
discriminative Haar feature to divide face images of Ωp−1 from the face images of Ωp at
a leaf node may or may not be found quickly. Thus, we may introduce a constraint on
the number of nodes that the tree is grown to. The number is borne out of experimental
set-ups that render sufficient accuracy.

To reiterate the recognition nominations, if a scaled face image reaches a leaf node
containing faces only of Ωp, the input face is nominated that of Ωp with the highest

1It is necessary to repeat the propagation of subwindows and not use any of the previous propagation
results at this point as various arbitration techniques finalize the location and extent of faces from the
results of detection.
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confidence. The identity threshold is 1. If a scaled face image reaches a leaf node con-
taining face images of more than one identity, then we calculate the identity threshold
for this leaf as,

identity likelihood =
number of faces of the most dominant identity

total number of face images in the bin

where the dominant identity is as estimated with a simple histogram analysis at the leaf
node. If the identity threshold thus calculated exceeds a global confidence threshold,
then the image is nominated as a face of the dominant identity. Identities returned from
the entire forest are collected and a majority voting scheme decides the final identity
to return.

We note that our recognition framework is in fact a P + 1 class problem. There are P
identities and the additional unknown identity. A face image can be nominated as the
face of an unknown identity if any of the following two conditions are satisfied:

1. The majority of the votes in the forest return the identity as that of Ωp+1 (stranger
identity).

2. The majority margin is not large. For instance, 4 random trees nominate the face
as Ωp, 3 trees nominate the face as Ωp−1 and so on.

In our approach above, we presented growing every random tree further such that
the leaf nodes divide the face images from different identities. A simplification of this
approach is to grow another forest using only the face images as a multi-class training
data. The random forest grown for face detection is not modified. The advantages of
the latter approach are:

• controlling the number of nodes grown is simplified,

• propagating a scaled face down the non-leaf nodes of the previously grown ran-
dom forests is unnecessary, and

• as the principal idea is to separate faces of different identities, the classification
results and the identity nomination will be the same.

It is to be noted that the "detection" random forests have already separated face im-
ages of different identities along the tree whilst finding discriminative Haar features
between the face and non-face training data. By growing another random forest, we do
not cannibalize those divisions. However, given the simplicity of growing a new forest
and low training time [1, 21, 22, 9, 6, 10], we limit our discussions to the latter approach.

Identification and verification is straightforward once the identity threshold is calcu-
lated. If the threshold exceeds a heuristically chosen limit, the face is identified as one
of P identities or as an unknown identity. If the identified identity matches the alleged
identity, the face is verified.
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T1 T2 T3

0 1 P

?

T1

T1

P+1

Figure 5.8: The complete framework of using random forests for face detection and
recognition. The P class training data, 2 for detection and P + 1 for recogni-
tion, is used to train random trees. A sliding window mechanism returns
the detected faces in the input image. A classification stage returns the
identity of the face (see text).
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We conclude the recognition framework by considering the four scenarios outlined by
Turk and Pentland [39] (discussed in Section 4.2). The scenarios are modified to model
our framework.

1. Regions of the input image do not contain faces and do not share any similar-
ity with faces. Our detection framework discards all subwindows that do not
contain faces. Such subwindows are not considered further.

2. Regions of the input image do not contain faces but share a few local visual
descriptors with faces. The random forest iteratively selects discriminatory fea-
tures to divide faces and non-faces. If a non-face rectangular region shares a
few geometric features with faces, along the depth of tree features are found that
subsequently separate faces and non-faces.

3. Regions of the input image contain faces but are not similar to any of the iden-
tities. In the random forest grown for recognition, face images will be nominated
as belonging to the p + 1 identity.

4. Regions of the input image contain faces and is similar to identity p. The
identity likelihood will nominate the face as belonging to identity p.

Figure 5.8 describes the overall system. A random forests is grown for detection using
the two class training data. A random forest is grown for recognition using the P + 1
class training data. The sliding window based detection algorithm returns the location
and extent of detected faces in the input image. Each face is now propagated down the
forest and an identity is returned based on confidence analyses.

5.8 Face Learning

As part of our motivation, we discussed that if a human face was not recognized as
one of the known identities then the robot introduces itself and learns the new identity.
This characteristic renders a human-like experience and improves the social interaction
between humans and robots.

We model face learning also by growing the random trees further. Let us assume the
mobile robot has introduced itself to a human being (Ωp′) and images are captured.
As it is likely that the images contain faces in backgrounds, we initiate the learning
stage with the detection and segmentation of the faces from the backgrounds. The
segmented faces are the training data for Ωp′ .

Each segmented face is propagated on a tree. At the leaf node, the trees are grown fur-
ther till the new identity is separated from the remaining identities at the leaf node. The
importance of this step is that previously, the random trees for recognition were grown
until images from only a single identity remained in the leaf nodes or to a heuristically
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chosen depth. By growing the trees further till the new image is separated respects the
classification accuracy of the forest before the new identity was introduced.

Subsequent to this procedure on all segmented faces, the framework is considered to
have learnt the identity. The recognition framework remains intact and identification
or verification is carried out as before.

We had previously discussed a simplification to growing the random forests for de-
tection further to also recognize by building a separate forest only for recognition. A
similar simplification can be extended here. If the number of identities is not large, the
random forests built for the P + 1 identities can be rebuilt for P + 2 identities2. Thus,
we do not need to grow the forest trained on recognition further but simply rebuild the
same with the newly segmented faces as an additional identity.

We conclude our framework with the observation that it is possible to build only a sin-
gle random forest for face detection, face recognition and face learning, analogous to
Deselaers et al. [14]. Our separation of concerns approach, i.e. independently develop-
ing the three tasks, allows for better parameterization and implementation simplicity.

5.9 Parameters

As we deal with several heuristics and decision criteria, we present a review of a few
important parameters in this section. We enumerate the same followed by the values
found optimal in our experimental setups.

1. Forest Size. This specifies the number of random trees to grow. As we discussed
in Section 5.1, increasing the number of trees improves the generalization accu-
racy. However, the improved accuracy is at the cost of an increase in the training
and classification time. For detection, we build either 2 or 3 random trees. For
recognition, we build between 3 and 20 trees. We note that results on recognition
is faster as we only need to integrate classification results. On the other hand,
with detection, a multi-resolution analysis needs to be performed on each of the
random trees.

2. Feature Size. This is the maximum allowed size of sampled subwindows of the
training data. We train on 24× 24 images and found a parameter tune at 11 to be
optimal. In previous experimental runs on images of other dimensions, such as
50× 50, a value of 20 was found optimal. We estimate that values a little less than

2It is assumed that the unknown identity class does not contain any face images of identities that might
be learnt by the mobile robot.
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√
M · 0.5 would prove optimal. It was additionally found the detection accuracy

lowered when larger limits were allowed.

3. Minimum Feature Size. This is the minimum allowed size of sampled subwin-
dows. Preventing instantiation of tests that sampled windows of 1× 1 pixels and
2× 2 pixels improved detection results. We found a value of 4 to be optimal. In
contrast, recognition results improved if this parameter was disabled.

4. Haar Filter Set. The feature extraction is an extensible architecture that can con-
sider additional Haar filters. We used only four features but the framework
allows an indefinite number. Pham and Cham [29] use 19 Haar filters.

5. Total Tests. We previously discussed that we quicken the tree growth by in-
stantiating a number of tests and selecting the test that returns the best split in
accordance to the Shannon Entropy calculation. We set the parameter to a value
of 200.

6. Node Count. Limiting the number of nodes a random tree is grown to has many
advantages. The first of which is that the memory requirements are reduced. The
time taken for the training, sliding window and classification is reduced. As a
collection of random trees is grown, the above advantages are important. Further,
the FMP is a suitable probabilistic estimation to determine if a subwindow is to
be nominated as a face. We found limiting the growth to 8000 nodes sufficient for
a ({Γ f }10000

1 , {Γn f }10000
1 ) training data collection3.

7. Scale Set. We previously discussed that to detect faces of all sizes, we use multi-
resolution analysis. We scale the image to different sizes and sample M dimen-
sional subwindows. At some scale, a face in the input image is rendered M
dimensional and detection is accomplished. Needless to say, the more the num-
ber of scales used, the higher is the precision of the alignment and bounding box.
We consider a total of 13 scale factors, where

s = {0.15, 0.25, 0.35, 0.5, 0.7, 1.0, 1.3, 2.0, 3.0, 3.25, 4.0, 4.7, 5.4}.

8. Sampling Offset. We mentioned in Section 5.5 that to reduce an exhaustive
sampling of subwindows that offset subwindows by 1 pixel, we can increase the
offset. We keep the value at 2.

9. Detection Window Merge Ratio. As part of the module to merge windows, this
parameter sets the minimal area of overlap between two detection windows be-
fore they are merged. The neighborhood range decides the detection windows to
consider for merging. We discussed either using overlapping rectangles or calcu-
lating the center of a circle and finding other windows in range. The approach
used to find neighborhood windows is relevant to the value this parameter takes.

3We previously discussed that, typically, the number of non-faces exceeds the number of faces in the
training data as a larger group of entities constitute as backgrounds. As we train on large collections,
the number of faces and background images are kept the same.
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Depending on the value of 2R, the diameter of the circular region, the area over
which overlapping rectangles are found is larger. In this instance, the parame-
ter must be set to a higher value in comparison to merging neighbors only on
overlapping rectangles. Not doing so will merge many unrelated detections. We
ran experimental set-ups with both approaches and found the best results when
overlapping rectangles was used with the parameter set to 0.3.

10. Face Map Threshold. The FMP represents the likelihood that a subwindow
classified in the leaf node is a face. We ran experimental set-ups with good
performances on all values from 0.3 to 0.7 (in steps of 0.1) and a value of 0.5 as
the best.

5.10 Implementation

In line with the theoretical foundations and framework of our thesis, we have imple-
mented a face detection and face recognition system with sufficient flexibility to be
extended for future work.

5.10.1 Overview

The implementation uses image processing operators and image data handling struc-
tures from the OpenCV library. OpenCV is a computer vision library developed by
Intel. It is an open source software and freely available for download. The OpenCV
development stresses on real-time image processing [84]. The overall framework of
our implementation is described in Figure 5.9. The figure depicts the frame grabber
component and a flow chart execution of the program.

The mobile robots we intend to the run the software on are equipped with Bumblebee R©2
stereo vision cameras. The cameras capture an image and the image is stored in the
memory with pixel values in the YUV space. The image is converted from the YUV
space to the RGB space using the conversion matrix [45]
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Y
U
V



 ,

where the values of R, G and B are taken to be in the range [0, 1]. The data directly in-
stantiates the main image manipulation data structure of OpenCV, IplImage. Specially,
the read image is copied to the imageData member. The IplImage object returns the
information (height, width, channels) necessary to execute further operations, such as
the sliding window detection mechanism and cropping detected faces.
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Figure 5.9: The figure depicts a flow chart of the complete system. There are two ex-
ecution paths, one of detection and the other of classification. In the left-
hand side of the figure, image capture and forwarding the image data is
illustrated. OpenCV image data handling structures are used in the imple-
mentation (see text).

On the right side of the figure, a flow chart summarizes two execution paths of the
system. The system reads the training images from the disk (the training images are
assumed to be appropriately organized). As discussed previously, a face detection
system expects two collections whilst a face recognition system expects P + 1 collec-
tions, where P is the number of identities and a separate set accounts for an unknown
identity.

A forest is grown and the system can subsequently either run in the detection mode or
the classification mode. If the execution proceeds in the detection mode, the input image
is stored in the instance of IplImage described above and passed into the main frame-
work. The sliding window detection mechanism module returns a list of bounding
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boxes predicted to be faces. The faces are cropped and saved.

The framework is re-run for recognition. The detected face is propagated on the forest
and the classification results are returned as the identity of the face. It is rarely the
case that we constantly add images to any face detection training data. Similarly, the
training data for recognition is augmented only in case a new identity is to be learnt.
To prevent growing random forests at every run, we have implemented a module to
save the random forests locally. The execution path of the framework does not require
access to the training data but to the saved abstract alone.

To visualize grown trees, we use GRAPHVIZ 4, a graph visualization software. As we
build binary trees, we create a digraph with the command:
digraph g { node [shape = record,height=.1], where the parameters define the
shape of the nodes and the default height. When a child node is instantiated in the
random tree, we use the command:
node%d[label = "<f0> %d| <f1> %s |<f2> %s "], where the first two parameters
are unique numbers assigned to the node, the third parameter is the composition
in terms of the training data with respect to this node and the fourth parameter is the
entropy value of the best test chosen at the node. We assign a global count of the nodes
created to the first two parameters. Figure 5.5 illustrates our design. In the figure, every
node in the displayed random tree is characterized with a global count of the node,
the composition and the entropy value of the best test. Subsequently, we monitor the
skeleton of the growth, as shown in Figure 5.6, by setting the style attribute to invis
and the shape attribute to rectangle. We note that the description of the visualization
as specified above is drawn from the semantics of the DOT language 5.

5.10.2 Software Architecture

We present a general skeleton of our software architecture below. We segment the
architecture into three parts: image manipulation structures, random tree structures
and parameterization. The images, once read, are converted to the integral image
representation discussed in Section 5.3.3. To access pixels easily, we wrote a wrapper for
the IplImage data structure to use both tri-band images and grayscale images as shown
in Figure 5.10. In the figure, the pixel values of the tri-band image or the grayscale
images can be read with the get methods. The images are converted to an array of
integers using the recursive definition detailed in Equation 5.10 and Equation 5.11.
Each of the N training images are read and stored in the integral image representation
as a vector called VectorOfIntegralImages.

4http://www.graphviz.org/
5http://www.graphviz.org/doc/info/lang.html
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+ getIplImage() 

+ []

attribute: IplImage imgp 

Image

+ []

+ getR()

+ getG()

+ getB()

RgbImage

<<RgbPixel>>

+ []

+ getP()

BwImage

<<BwPixel>>

Figure 5.10: An implemented wrapper for the IplImage image manipulation data struc-
ture.

As we described in Algorithm 3, the vector at root node Γt is recursively split into the
left and right children based on a test characterized by Tt = {xt, yt, ht, wt, Γl , Γr, θt}. In
Figure 5.11, the class Test returns the entropy H of a split using Equation 5.12.

int* VectorOfIntelgralImages
N 1

+ getEntropyValue() 

+ imagePass() 

attribute: VectorOfIntegralImages leftBranch, rightBranch

attribute: int number_of_classes

attribute: double 

attribute: int 

Test

2

1

leftBranch, rightBranch

xt, yt, ht, wt

+ slidingWindow() 

+ getNodeIndex() 

+ detectFace() 

+ getClassificationHistogram() 

attribute: Test *test 

attribute: Tree *leftTree, *rightTree

attribute: VectorOfIntegralImages images

attribute: int nodeIndex 

Tree

1

1
1

2

leftTree,
rightTree

1..* 1

θt

Figure 5.11: An overview of class relationships.

The module imagePass returns true if an image subwindow crosses the threshold and is
categorized to the left node. Typically, there is only one test per node but we discussed
the use of L nodes to shorten tree growth. This is expressed in the compositional
relationship between class Test and class Tree.

To control the depth of the tree as the number of nodes grown, the nodeIndex attribute
is used. In the detection execution path, the detectFace module samples the image at
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different scales and the slidingWindow module iteratively detects faces. In the recogni-
tion execution path, the getClassificationHistogram returns the identity.

+ get*() 

attribute: string location_training, location_testing 

attribute: int minimum_feature_size, maximum_feature_size

attribute: int L, number_of_nodes

attribute: FILE file_list[10] 

attribute: int number_of_classes 

attribute: double face_map_threshold, merge_window_threshold

attribute: double identity_threshold

ConfigClass

Figure 5.12: The ConfigClass data structure for the parameterization.

We have, to this point, described the image manipulation and the random tree soft-
ware data structures. For our parameterization, we consider a separate structure titled
ConfigClass. Figure 5.12 shows a subset of important attributes. The class is comple-
mented with corresponding get modules. The attribute file_list contains the log
files of the random forests. The main module operates on the basis of the overview
presented in Figure 5.9. A collection of random trees are grown and the post processing
step effectively aggregates the results from each tree.
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In this chapter, we present evaluations of our framework on face detection and recog-
nition. We compare face detection with random forests to the adaptive boosting based
face detector by Viola and Jones [30]. Our evaluations are presented with ROC curves
in Section 6.1. We compare face recognition with random forests to support vector
machines and log-linear models in Section 6.2. The latter evaluations are presented
with confusion matrices and rank-1 recognition rates, both of which are introduced
shortly.

6.1 Face Detection

In this section, we present evaluations on face detection with random forests. In Sec-
tion 6.1.1, we introduce ROC curves. In Section 6.1.2 we present our comparisons.

6.1.1 Introduction

The evaluation of a face detection system [30] is typically presented using a receiver
operating characteristics (ROC) curve [27]. The ROC curves is a plot of sensitivity
versus 1 - specificity. For a detection system, the number of faces correctly detected are
identified as the benefits of the system. On the other hand, the number of false positives
returned are identified as costs. ROC curves are influential in analyzing tradeoffs
between benefits and costs.

The ROC curves are plotted with true positive rate (TPR) on the Y-axis and false positive
rate (FPR) on the X-axis. To recapitulate, the true positive rate is calculated as,

True Positive Rate =
true positives

true positives + false negatives

=
number of faces detected

total number of faces in the input image
(6.1)

where Equation 6.1 is the detection accuracy previously discussed in Chapter 3. This is
the sensitivity of the detection system.
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The false positive rate (FPR) is calculated as,

FPR =
false positives

false positives + true negatives

=
number of subwindows incorrectly labeled as faces

all sampled subwindows in the input image
(6.2)

where the cardinality of the sampled subwindows is usually drawn from the sliding
window detection algorithm outlined in Algorithm 4.

The specificity is defined as 1− FPR. Thus, the ROC curve is equivalently sensitivity
vs. 1 - specificity and TPR vs. FPR. A classifier, if allowed to make a random guess on
the class labels then the performance in the ROC space is a diagonal line through the
origin as shown in Figure 6.1.
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Figure 6.1: A ROC space. The diagonal represents a random decision by a binary clas-
sifier. The space above the diagonal represents a performance better than a
random decision. The space below the diagonal represents a performance
worse than random.

In accordance, a plot of the ROC curve of a classifier should be above the diagonal, as
we intend to achieve performance better than random. The FPR calculated as above is
approach specific as the total number of sampled windows is approach specific. For
instance, if an approach uses a multi-resolution sampling like our framework then the
number of scales considered and the offsets both contribute to the FPR.

Hence, face detection results are either presented with respect to the number of false
positives or the relative rate of the false positives with respect to the number of faces
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in the input image. In the latter, Equation 6.2 is rewritten as,

FPR =
number of subwindows incorrectly labeled as faces

total number of faces in the input image
(6.3)

It can be derived that the FPR calculated thus is in the range [0 : Z], where

Z =
all sampled subwindows

total number of faces in the input image

and Z is the right most point in the X-axis of the ROC curve plot.

ROC curves help us measure the highest achievable detection accuracy with respect to
an allowed number of false positives. Global parameters, such as the number of nodes
grown and the face map threshold, are varied to measure the detection accuracy and
the accompanying false positives count. The responses are plotted. If the algorithm
allows every subwindow to be classified as a face then the FPR will take the maximum
value but the TPR will be 1.0. This is the final point in the ROC curve where we have
100% detection accuracy at the cost of every non-face falsely labeled as a face.

6.1.2 ROC Curve Plots

We evaluate the performance of our detection system against the adaptive boosting
based face detector proposed by Viola and Jones [30]. The Viola and Jones detector
offers one of the most impressive detection performances [29, 30]. It is also freely
available as a module of the OpenCV library. Configuration files trained to detect
faces are also supplied as part of the OpenCV installation. We note that the supplied
configuration files offer the best results.

A clear comparison of the two approaches is only possible under the following condi-
tions:

• the approaches are trained on the same training data and

• the results are evaluated under similar conditions on the same test data.

In accordance, we ran experimental analyses on a comprehensive set of training data
freely available (enumerated in Section 4.3.1). The best performances on both random
forests and the adaboost approach was achieved on the Universidad Politecnica de
Valencia Face database [65]. We consider three subsets for training:

1. C1. The subset has a random selection of 1000 faces and 1000 background images.

2. C2. The subset has a random selection of 4000 faces and 4000 background images.

3. C3. The subset has a random selection of 10000 faces and 10000 background
images.
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The non-faces in each of the subsets were obtained by extracting random patches from
the images that do not contain any faces and are typical backgrounds. All the training
images used are 24 × 24 pixels in height and width.

The test set is composed of a difficult subset and a randomly chosen subset drawn from
both the CMU test collection (Section 4.3.2) and the BioID face data set (Figure 4.8). The
former is composed of faces of varying sizes in complex backgrounds and different
illumination conditions as well as rotated faces. The latter was chosen as it approxi-
mately presents typical images that a mobile robot may encounter. The images in the
BioID dataset contain faces with the following characteristics:

• slight variations in pose,

• sufficient variations in expressions,

• slight variations in illumination,

• slight variations in the dimension of the faces across the identities and

• typical backgrounds that a mobile robot might encounter such as windows and
the backdrop of a room.

The complete test collection consists of 123 images with a total of 188 faces. With
respect to this test set, we present the following evaluations for face detection:

1. R1, a ROC curve plot of random forests vs. the adaboost module, both trained on
C1.

2. R2, a ROC curve plot of random forests vs. the adaboost module, both trained on
C2.

3. R3, a ROC curve plot of random forests vs. the adaboost module, both trained on
C3 and the adaboost trained for 6 stages. We refer to the corresponding adaboost
training as Adaptive Boost #1.

4. R4, a ROC curve plot of random forests vs. the adaboost module, both trained on
C3 and the adaboost trained for 9 stages. We refer to the corresponding adaboost
training as Adaptive Boost #2.

5. R5, a ROC curve plot of random forests trained on C3 vs. the adaboost module
used with a configuration file supplied as is. We refer to the corresponding
adaboost training as Adaptive Boost #3.

An important disparity between the approaches is the training time. As we discussed
earlier, the adaboost face detector builds cascades of binary classifiers. Each attentional
cascade reduces the false positive rate further. In accordance, the training time increases
for each additional stage. Training the adaboost module for R3 to 6 stages requires 5
days on an Intel Core 2 Duo processor equipped with 2 Gigabytes of RAM. Training the
adaboost module for R3 to 8 stages requires 7 days on an Opteron machine equipped
with 16 Gigabytes of RAM. In comparison, training random forests on R3 for a node
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count of 10000 with L = 200 requires 400 seconds on an Intel Core 2 Duo processor
with 2 Gigabytes of RAM1.
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Figure 6.2: R1, a ROC curve plot of random forests and adaboost, both trained on C1.
Random forests perform comparatively similar to adaboost.

R1 is presented in Figure 6.2 with the adaboost module trained on C1 for 4 days. It is
clear from the figure that the random forests perform with similar detection accuracy
with respect to false positive rates. However, for detection accuracies a little over 90%,
the growth of false positives is faster with adaboost.

R2 is presented in Figure 6.3 with the adaboost module trained on C2 for 6 days. It is
clear from the figure that for a little over 90% face detection accuracy, the false positive
rate is considerably lower with random forests. Further, the detection accuracy is
also lower than that of random forests prior to FPR = 1.0. Comparing the adaboost
performance in Figure 6.2 and Figure 6.3, it can be observed that the detection accuracy
is higher when trained on C2. The larger set of faces and non-faces detect more faces.

R3 and R4 are presented in Figure 6.4 and Figure 6.5 respectively. It is clear that many
stages need to be trained for the adaboost. We see a rapid drop in the false positive rate
with an increase of just two stages. We recapitulate that the former was run for 6 stages

1The training durations have broader implications. As both random forests and adaboost approaches
are generic, they are used equivalently for detection and classification of any object. Random forests
offer a comparatively faster training phase.
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Figure 6.3: R2, a ROC curve plot of random forests and adaboost, both trained on
C2. Random forests present a higher detection accuracy for lower false
positives.

and the latter for 8. Random forests slightly outperform the adaboost approaches till
approximately 91% detection accuracy. It is reported that the false positive rate is
expected to drop to very low values with as many as 25 stages 2.

We finally present R5 in Figure 6.6. From the figure, we observe a slightly better
performance of Adaptive Boost #3 with respect to random forests. The random forests,
on the other hand, perform better than Adaptive Boost #2 and Adaptive Boost #1, as
was concluded from Figure 6.2 and Figure 6.3. We reiterate that the adaboost approach
offers the best face detection system [30].

Figure 6.7 highlights the detection rates at a higher granularity for a FPR range of [0:1].
In the figure, the plot of Adaptive Boost #3 is close to the Y-axis in the figure. This is
attributed to the fact that for low detection accuracies, Adaptive Boost #3 yields very
low false positives. It is to be noted that neither Adaptive Boost #1 nor Adaptive Boost
#2 perform similarly for the stages we trained them to. It can be concluded from the
graph that for a detection accuracy of over 90%, the false positive rates are roughly
equal for both Adaptive Boost #1 and random forests. For instance, allowing 25 false

2http://groups.google.com/group/OpenCV
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Figure 6.4: R3, a ROC curve plot of random forests and adaboost, both trained on C3.
The adaboost was trained to 6 stages.

positives, Adaptive Boost #3 detects 178 and random forests detect 175 out of the 188
faces.

One of the principal justifications for the slightly lower performance of random forest
when compared to Adaptive Boost #3 is that of the post processing phase. The post
processing phase must effectively merge the detections from both the multi-resolution
sampling and all the random trees. We grow only three random trees for face detection
as we observed the faces get successfully detected in each of the trees. Taking all of the
merging strategies discussed in Section 5.6 into account, we found the following steps
to be most effective:

• The individual scale results are merged by considering neighbors from overlap-
ping rectangles as outlined in Figure 5.7. The merging procedure used is one that
considers a weighted combination described in Equation 5.15. The α tied to the
detection window with the highest FMP is set to 1 and the remaining are set to
very low values.

• The results of the step above are scaled back to be applicable to the input image.
Neighbors are found from overlapping rectangles as above. The biggest rectangle
is selected and the others are discarded.
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Figure 6.5: R4, a ROC curve plot of random forests and adaboost, both trained on C3.
The adaboost was trained to 8 stages.

The above merging strategy, although it performs best among other strategies experi-
mented with, is error prone. In comparison, the adaboost approach builds a cascade
of classifiers to reduce the false positives in the attentional stages. The initial stages,
on the other hand, are very liberal to allow for a large number of detections. There
seems to be no trivial procedure to accomplish the same for random forests in short
of a direct analogy: growing stages of random forests and forwarding detections from
the previous stage to the next. Additionally, the detection subwindows suffer from
alignment errors.

Figure 6.8 presents a few of our detections. Minor alignment errors are present in some
of the detections. However, if we consider the image highlighted with a blue border,
we note that the second detection (orange subwindow) is badly aligned3. In the image
highlighted with a turquoise border, we note a false positive. In the image highlighted
with a purple border, we note a false negative, i.e. a face is not detected at all.

We aim to the address the above in our future work (Chapter 7) and conclude with the
remark that random forests offer extremely competitive results with respect to the best
face detection system in literature.

3Our evaluations do not nominate the same as a correctly detected face.
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Figure 6.6: R5, a ROC curve plot of random forests and adaboost modules. Adaptive
Boost #1 is adaboost trained on C3 to 6 stages. Adaptive Boost #2 is ad-
aboost trained on C4 to 8 stages. Adaptive Boost #3 is the performance
with a configuration file for face detection provided as part of the OpenCV
installation.

6.2 Face Recognition

To present our face recognition results we use the simplified construction of our recog-
nition framework. Namely, we build a separate random forest trained on the P class
collection. We present all our evaluations on 4000 nodes and L = 1000. We report that
growing a random tree to 4000 nodes with L = 1000 requires 75 seconds. Growing a
random tree to 1000 nodes with L = 200 requires 3 seconds.

6.2.1 Testing Framework

In Chapter 4, we discussed the FERET evaluation as one of the benchmarks used by
most face recognition systems. However, the FERET evaluation is composed primarily
of one training image and one probe image. Due to the training nature of random
forests, we need more training images. Thus, we present three separate evaluation col-
lections below. Needless to say, the training data D and the test data T are completely
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Figure 6.7: R5, a ROC curve plot of random forests and adaboost modules. The plot is
limited in the FPR range of [0:1].

disjoint, i.e. D ∩ T = Ø.

• T1, 4 identities randomly drawn from the Universidad Politecnica de Valencia
Face database [65] database with the following training data composition is D =
{(188, 0), (164, 1), (92, 2), (92, 3)}, where D is the training data that has 188 faces
for identity 0, 164 faces for identity 1 etc. The test data composition is T =
{(14, 0), (14, 1), (14, 2), (14, 3)}.

• T2, 7 identities randomly drawn from the BioID database. We are not aware
of any identity annotation of the BioID face database. We thus manually sep-
arated the database based on different identities and selected seven identities
with the highest number of images. The training data composition is D =
{(65, 0), (59, 1), (67, 2), (72, 3), (37, 4), (65, 5), (99, 6)}. The test data composition
is T = {(8, 0), (2, 1), (2, 2), (5, 3), (15, 4), (9, 5), (0, 6)}. We note that a subset of the
faces in T2 were supplied with their respective backgrounds as part of the test
collection for the ROC plots presented previously.

• T3, to probe the performance of our recognition framework when the number
of training are less, we consider five randomly chosen identities from the Yale
Database [67]. The training data composition is D = {(9, 0), (7, 1), (8, 2), (9, 3), (9, 4)}.
The test data composition is T = {(2, 0), (4, 1), (3, 2), (2, 3), (2, 4)}.
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6.2 Face Recognition

Figure 6.8: Sample detections with random forest. We note the presence of a few minor
alignment errors. Additionally, the image highlighted with a blue border
reports a very bad alignment. The image with the turquoise border includes
a false positive. The image with the purple border includes a false negative.

6.2.2 Rank-1 Recognition Rates

We present our results in terms of the rank-1 recognition rates and a confusion matrix.
The rank-N recognition is the percentage that the correct label of the input image in
within the top N suggestions [58]. Rank-1 recognition is, thus, essentially the results
returned as is by the random forests using majority voting.

The confusion matrix is a table that contains information on the actual and suggested
class labels [85]. For the three evaluations presented above, we draw the confusion
matrices below. A confusion matrix is useful in capturing cases when an identity is
repeatedly classified as another.

Table 6.1 presents the confusion matrix on the evaluation T1. We achieve a rank-1
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0 1 2 3
0 14 0 0 0
1 0 14 0 0
2 6 0 8 0
3 1 0 0 13

Table 6.1: A confusion matrix on the evaluation collection T1. Rank-1 recognition rate
of 87.5%.

0 1 2 3 4 5
0 5 0 0 0 0 3
1 1 1 0 0 0 0
2 0 0 2 0 0 0
3 0 0 0 5 0 0
4 1 0 0 0 14 0
5 0 0 0 0 0 5

Table 6.2: A confusion matrix on the evaluation collection T2. Rank-1 recognition rate
of 86.5%.

recognition rate of 87.5%. The rank-1 recognition can be calculated directly from the
confusion matrix using:

rank-1 recognition =
sum of the diagonal elements

sum of the rows or sum of the columns

Table 6.2 presents the confusion matrix on the evaluation T2. We achieve a rank-1
recognition rate of 86.5%. Finally, the evaluation of random forests with very little
training data is presented in Table 6.3. We achieve a rank-1 recognition rate of 85%
where 11 of the 13 test images are correctly classified.

0 1 2 3 4
0 2 0 0 0 0
1 1 3 0 0 0
2 0 1 2 0 0
3 0 0 0 2 0
4 0 0 0 0 2

Table 6.3: A confusion matrix on the evaluation collection T3. Rank-1 recognition rate
of 85.0%.
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0 1 2 3
0 14 0 0 0
1 0 14 0 0
2 0 3 11 0
3 0 0 0 14

0 1 2 3
0 14 0 0 0
1 0 14 0 0
2 0 2 12 0
3 0 0 0 14

Figure 6.9: Left:T1 with log-linear models with rank-1 recognition of 94.6%. Right:T1
with SVM with rank-1 recognition of 96.4%.

0 1 2 3 4 5
0 8 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 1 0 1 0
3 0 0 0 5 0 0
4 0 0 0 0 15 0
5 0 0 0 0 0 5

0 1 2 3 4 5
0 8 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 2 0 0 0
3 0 0 0 5 0 0
4 0 0 0 0 15 0
5 0 0 0 0 0 5

Figure 6.10: Left:T2 with log-linear models with rank-1 recognition of 94.6%. Right:T1
with SVM with rank-1 recognition of 97.3%.

To compare our evaluations to important approaches used in literature, we consider
face recognition using support vector machines and log-linear models. Support vector
machines were previously presented in Section 4.2 and the corresponding illustration
in Figure 4.3. We use the LIBSVM [62, 63] library for support vector machine based
recognition. The values for C and γ were drawn using cross-validation. The values
obtained thus are used to build P(P− 1)/2 SVM with the complete training data. We
use an implementation by Deselaers et al. [86] for building our log linear models. We
present the confusion matrices and corresponding recognition rates here.

Figure 6.9 presents the rank-1 recognition rates on T1 using log-linear models and SVM.
Figure 6.10 presents the rank-1 recognition rates on T2 using log-linear models and

0 1 2 3 4
0 2 0 0 0 0
1 0 4 0 0 0
2 0 0 3 0 0
3 0 0 0 2 0
4 0 0 0 0 2

0 1 2 3 4
0 2 0 0 0 0
1 0 4 0 0 0
2 0 1 2 0 0
3 0 0 0 2 0
4 0 0 0 0 2

Figure 6.11: Left:T3 with log-linear models with rank-1 recognition of 100.0%. Right:T3
with SVM with rank-1 recognition of 92.3%.
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T1 T2 T3
RF 87.5 86.5 85.0
Log-linear 94.6 94.6 100.0
SVM 96.4 97.3 92.3

Table 6.4: Rank-1 recognition rates with random forests (RF), log-linear models and
support vector machines (SVM) on T1,T2 and T3. The rates are expressed as
percentages.

SVM. Figure 6.11 presents the rank-1 recognition rates on T3 using log-linear models
and SVM. From the above, we can conclude that both log-linear models and SVM per-
form, on an average, 9% better than random forests. As support vector machines offer
one of the best face recognition results [61], it is to be noted that our rank-1 recognition
rates are very competitive. We present a histogram for comparison of the rank-1 recog-
nition rates in Figure 6.12 and Table 6.4.

 0

 20

 40

 60

 80

 100

T
1

T
2

T
3

Rank-1 recognition rates with random forests, log-linear models and support vector machines.

RF
Log-linear

SVM

R
a
n
k
-1

 R
e
c
o
g
n
it
io

n
 R

a
te

Test Collections

Figure 6.12: A histogram plot of the rank-1 recognition rates with random forests (RF),
log-linear models and support vector machines (SVM) on T1,T2 and T3.
Random forest recognition rates are competitive.

Typically, recognition approaches present results on test images that are perfectly nor-
malized. The face images are identical in the position of eye, nose and other features,
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6.2 Face Recognition

both in the training data and the test collection. However, in a mobile robot, we can
not expect perfectly normalized faces. As a result, the test images in T1, T2 and T3
were obtained automatically using Adaptive Boost #3. We discussed previously in
Section 6.1.2 that although random forests detect faces comparatively to adaboost on
the ROC curve plots, the former suffers with considerable alignment errors. As our
recognition models expect the location of facial features at approximately relative spa-
tial locations, the recognition rates are low when faces directly cropped from random
forest detections are used. Jones and Viola [58] report that the faces detected using the
adaptive boost face detector are additionally normalized with fixed eye positions. Our
results above, however, are directly drawn from the extent and position as returned by
Adaptive Boost #3.
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Figure 6.13: A histogram plot of the rank-1 recognition rates with random forests (RF),
log-linear models and support vector machines (SVM) on T2 and T3. The
test data was drawn from detections as returned by the random forest
detection framework presented in Section 5.5.

The histogram in Figure 6.13 reflects the recognition performance on using the detec-
tions from random forests directly. We present rank-1 recognition rates on only T2 and
T3 as all the images from T1 are completely normalized. We reiterate that the training
images are the same as those used for Figure 6.12. The results are also presented as a ta-
ble in Table 6.5. Here, we observe that random forests perform well on T3 as compared
to T2. This is attributed to the fact that the detection in T2 suffer from higher alignment
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T2 T3
RF 13.7 53.4
Log-linear 25.5 30.8
SVM 31.37 30.76

Table 6.5: Rank-1 recognition rates with random forests (RF), log-linear models and
support vector machines (SVM) on T2 and T3. The test data was drawn from
detections as returned by the random forest detection framework presented
in Section 5.5. The rates are expressed as percentages.

error rates.

6.2.3 Unknown Identity

Face recognition literature does not clearly model the identification of an unknown
identity. The task is challenging as most approaches, typically, search for the likelihood
of an input face recognized as an identity Ωp. The result of this search is one of the
known identities. A heuristically chosen threshold is introduced to nominate the input
face as the corresponding identity or as unknown. Turk and Pentland [39], for instance,
introduce a threshold with which the vector of weights from the eigenface framework
are compared to determine if the face is known or unknown. We evaluate an approach
to the identification of unknown identities with random forests below.

In Section 5.7, we outlined a procedure to identify strangers. We model our recognition
framework as a P + 1 class problem where the additional class contains a collection of
faces images of different identities. If an input face is recognized as belonging to this
class, we designate the face to be unknown. We present our evaluations on T1. Our test
approach is as follows. To begin with, T1 is composed of training images and test im-
ages of four identities. We created a separate collection of 188 face images of identities
randomly sampled from the entire set of identities not considered in {Ω0, Ω1, Ω2, Ω3}.
We denote the same as ΩP+1. We now iteratively replace one of the four identities
with ΩP+1 and measured the corresponding recognition rates. For instance, in the first
run, we replace the training images for Ω0 with ΩP+1. We now measure the (i) rank-1
recognition on the test images for Ω1,2,3 and (ii) rank-1 recognition on the test image for
Ω0. The first measurement, m1, investigates the decrease in recognition on introducing
a training collection with a wide variety of face images. The second measurement, m2,
investigates the nomination of an unknown face as an unknown identity, in this case,
Ω0. Thus, in our experimental framework, an ideal recognition would categorize each
test image in the exact same training data index.

Figure 6.14 plots the results. In the figure, the red color plot denotes that the training
data composition is {ΩP+1, Ω1, Ω2, Ω3} (there is no training data for identity 0). Test
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Figure 6.14: Rank-1 recognition rates unknown identities.

Ω0 Ω1 Ω2 Ω3
0 64.2 85.7 50 92.8
1 100 100 64.2 100
2 100 92.8 75.8 92.8
3 100 92.8 57.1 50

Table 6.6: Rank-1 recognition rates with unknown identities. In row j, the correspond-
ing identity is an unknown identity as the training data for Ωj is replaced
with ΩP+1 (see text).

images of Ω0 was correctly recognized as an unknown identity (ΩP+1) with a 64.2%
accuracy. Correspondingly, test images for Ω1 was correctly recognized as identity Ω1
with a 85.7% accuracy. Test images for Ω2 was correctly recognized as identity Ω2 with
a 50% accuracy and so on. Table 6.6 presents the corresponding rates.

The non-diagonal elements of the recognition in Table 6.6 denote m1. They indicate, on
an average, the correct recognition of identities on the introduction of ΩP+1, a collection
with a wide variety of face images. From the table, we obtain 85.6%. The diagonal
elements of the recognition in Table 6.6 denote m2. They indicate, on an average, an
unknown face correctly identified as an unknown identity. From the table, we obtain
72.5%.
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6.2.4 Forest Size

Marée et al. [5, 6, 9, 10] discuss the improvements in classification accuracy with an
increase in the forest size. We proceed on similar lines but our evaluations are adjunct to
face recognition. We probe rank-1 recognition with increases in the size of the random
forest.
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Figure 6.15: Rank-1 recognition rates with respect to the forest size. The recognition
rates were measured with the random forest composed of 1, 2, 4, 10, 15
and 20 random trees.

Our initial experimental evaluation is on a single random tree. We consider {2, 4, 10, 15,
20} random trees as voting predictors for the forest. Figure 6.15 presents rank-1 recog-
nition rates on T3. We observe that, with only 1 or 2 random trees, the performance is
low with only a 61.53% rank-1 recognition rate. With 4 random trees, the random forest
achieves a recognition rate of 69.23%. With 10 and 15 random trees, the rate stabilizes
at 76.92%. Finally, at 20 random forests we achieve a rank-1 recognition of 84.61%.
The corresponding confusion matrix for 20 random forests was presented earlier in
Table 6.3.
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6.3 Summary

0 1 2 3
0 5 1 1 0
1 0 7 0 0
2 0 0 7 0
3 0 0 0 7

Table 6.7: A confusion matrix on KBSG Face Database. Rank-1 recognition rate of
92.86%.

6.2.5 KBSG Face Database

Our proposal and our motivation was towards a face processing system for mobile
robots. The KBSG Face Database was presented in Figure 4.7. The database was cre-
ated with the Firewire camera used with the RWTH Aachen Robocup@Home mobile
robots [73]. The database is representative of the interaction between the robot and
human subjects as the images are with different illumination conditions, typical back-
grounds, side profiles, variable distances between the subjects and the camera.

We used Adaptive Boost #3 directly to crop the faces. We used the image processing
libraries to universally crop and scale the faces to 48× 48. The KBSG database consists
of 4 identities with 30 faces each. We divide the collection to 23 faces for training and 7
faces for testing. We report that 26 of the 28 images were accurately recognized, i.e. a
rank-1 recognition rate of 92.86%. The corresponding confusion matrix is presented in
Table 6.7. We note that we do not present recognition on the KBSG Face Database with
SVM and log-linear models as we are only interested in the accuracy achieved with our
random forest implementation to be deployed on the RWTH RoboCup@Home robots.
A comparison of recognition accuracies to SVM and log-linear models have already
been reviewed earlier.

The results presented uses a forest of 20 random trees, with each tree grown to a depth
of 3000 nodes. Further, we set L = 1000. The training time for the forest is 14 minutes.
However, to learn new identities, we need a fast training framework, especially, to be
applicable to the RoboCup@Home competitions. We thus grew only 3 random trees,
each grown to a depth of 800 nodes and L = 50. We report the forest trains and returns
recognition results in 1 millisecond. The resulting rank-1 recognition rate is 83.3%.

6.3 Summary

In this chapter, we presented comparative evaluations of face detection and recognition
with random forests. Detection with random forests was compared to an adaptive
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boosting based face detection systems. ROC curve plots were presented on detection
with random forests and 3 adaptive boosting training configurations.

Recognition with random forests was compared to SVM and log-linear models. Rank-1
recognition rates were presented on three test collections. Additionally, rank-1 recogni-
tion rates with random forests were presented on the KBSG Face Database that captures
typical image scenarios that a mobile robot will encounter.

Lastly, we presented improvements in classification accuracy on increasing the size of
the forest. In the next chapter, we draw our conclusions. We briefly summarize the
evaluations and discuss future work.
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7 CONCLUSION AND FUTURE WORK

7.1 Conclusions

Our thesis presents an integrated framework to the detection, recognition and learning
of faces with random forests. Random forests are structurally homogenous to classical
decision trees but randomize the decision criteria. Random forests sample random
rectangular regions and learn features from training data. We have an implementation
of our framework that is compared to state-of-the-art approaches. Particularly, we
compare the performance of face detection with random forests to adaptive boosting.
Random forests outperform adaptive boosting when they are trained on the same
data. Random forests perform comparatively to adaptive boosting using the training
configuration supplied as part of the OpenCV installation.

We however note that face detection with random forests suffers from alignment errors.
The alignment errors are not tied theoretically to random forests but lie in the error
prone merging techniques developed. Merging is influenced by our search for the
neighbor range. If the neighbor range is large, multiple faces in the immediate vicinity
will be falsely considered to be the same face. If the neighbor range is small, multiple
subwindows for the same face collected from the multi-resolution analysis and multiple
trees will be falsely considered as multiple faces. Thus, we are typically left with a large
number of nominated detections in neighboring locations making our post-processing
non-trivial.

We presented comparisons of face recognition with random forests to face recognition
with SVM and log-linear models. We considered 3 test collections and observed that
random forests performed within a range of 9%, on average, to both SVM and log-linear
models.

A critical characteristic of random forests is the training time. Due to the fact that
completely random features are sampled, the random tree growth is fast. We reported
in Section 6.2.5 that the training of 3 random trees to a depth of 800 nodes with L =
50 takes a millisecond. This feature allows the rebuilding of trees in feasible time.
A critical parameter is the forest size. Allowing an increase in the number of trees
grown increases the classification accuracy and training time. A tradeoff is necessary
depending on the time constraints. We have shown that with 20 random trees, high
classification rates are obtained.
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We have also described two approaches to the realization of our overall framework.
The first is building a random forest on the two-class face detection training data and
growing the same further, for recognition and the introduction of a new identity. The
second and simpler approach considers a separate forest for detection and a separate
forest for recognition. On the introduction of a new identity, the forest for recognition
is either rebuilt or grown further.

We present a brief overview of our results in Table 7.1. The table presents our concerns
with the detection of faces with random forests and its comparative performance to
adaptive boosting training configurations. Additionally, rank-1 recognition rates on
the KBSG Face Database is 92.86%, rendering the same to be sufficiently accurate to be
deployed.

Task Tool Conclusions

Face Detection ROC Curve
plot

From Section 6.1.2 and Figure 6.6:
• RF outperform adaboost with same train-

ing data.

• RF perform comparatively to adaboost
with installed training configuration.

• RF results present non trivial merging pro-
cedure.

• RF suffer from alignment errors.

• RF training is fast.

Face Recognition Rank-1
recognition
rates

T1 T2 T3
RF 87.5 86.5 85.0
Log-linear 94.6 94.6 100.0
SVM 96.4 97.3 92.3

Table 7.1: A summary of the evaluations on face detection and recognition with random
forests.

In summary, we have presented, reviewed and realized an integrated framework for
the detection, recognition and learning of human faces with random forests for mobile
robots which fulfills our requirements aimed at.
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7.2 Future Work

Our work was motivated and is towards a face processing system on a mobile robot.
While we present fast training times with random forests, we are yet to ascertain if a
random forest framework offers the best run-time deployment. Specifically, we intend
to verify the following:

• Does detection with random forests offer an acceptable detection time versus
accuracy trade-off with the mobile robot operating in a dynamic environment?
We intend to probe the possibility of achieving satisfactory and fast detection of
human faces as the mobile robot is carrying out its typical tasks.

• Does recognition with random forests offer an acceptable recognition time versus
accuracy trade-off in similar conditions as above?

• Is the face learning framework fast enough to render a natural experience? Sp-
ecifically, we discussed our intention of the framework made applicable in the
RoboCup@Home competitions. The RoboCup@Home necessitates a rapid learn-
ing of new identities. To recapitulate, the face learning framework can be real-
ized either by growing the forest further or rebuilding the trees. If we realize the
framework by rebuilding the trees, we intend to investigate a trade-off between
the number of trees and the recognition accuracy in this scenario. If we realize
the framework by growing the trees further, we intend to investigate a trade-off
between the number of trees to grow further and the recognition accuracy.

• We intend to ascertain the benefits in terms of speed, simplicity, memory effi-
ciency of a unified framework as opposed to individual implementations of face
detection and recognition systems.

We previously discussed that the random forest framework is generic. It is thus an
interesting extension to consider the detection and recognition of any general object,
such as a cup, in complex backgrounds. The RWTH Aachen RoboCup@Home robots
are already equipped with a speech recognition system [73, 87]. Relaying information
from the speech component to recognize humans and objects is a very important ex-
tension.

We conclude with the fact that our integrated approach to the detection, recognition
and learning of human faces can be modeled to the detection and recognition of any
generic object. Further, the framework presented allows the possibility of including
extensions that will lead to an improved social interaction between humans and robots.
Lastly, our detections and recognition results, independently, are extremely competitive
to the best detection and recognition results published.
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8 NOTATION

This section serves as a reference to the common symbols used in our work.

Symbol Name Description

% Real Space space of all real numbers

ΓN
1 data for training defined as {Γ1, . . . , ΓN}

cp
1 Class Labels class labels defined as {c1, . . . , cp}

D Training Data defined as D = {(Γn, cp) : n = 1, . . . , N; p = 1, . . . , P}

Ωp Identity p is a shorthand symbol for an identity

ψ Average Face the average of the training images

ψp the average of the training images for an identity Ωp

Γ denotes a set of training images (Γl , Γr, etc. )

f Filter defined as f (Γ) : Γ #→ %M′

h Classifier defined as h(Γ) : Γ #→ p, where p is the class label

C Correlation Matrix defined as C = 1
N

N

∑
n=1

(Γn − ψ)(Γn − ψ)T

S Scatter Matrix defined as S =
N

∑
n=1

(Γn − ψ)(Γn − ψ)T
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