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Since at least the 1980s, AI had enjoyed considerable 
success in a wide variety of applications, such as logistics 
and automated diagnosis. In most cases, knowledge of 
the problem was expressed in a symbolic framework by 
an expert, and a search procedure was used to identify a 
solution. In contrast, the last two decades have seen the 
explosive growth of methods that learn models directly 
from data. Among other things, the availability of large 
repositories of suitable training data, and the increase in 
computer processing power have been key factors. The 
popularity of machine learning (ML) lies in the fact that 
humans have a propensity to model problem domains 
in a rigid and deterministic way. Such models may fail 
to identify hidden patterns, or otherwise deal with the 
randomness found in nature. By learning models from 
data, some of these pitfalls may be avoided. Recently, 
for example, the computer program AlphaGo beat 
professional human players at the ancient strategy game 
Go; the program was trained on 30 million positions. 
 Inspired by such successes, there is a widespread 
trend to leverage state-of-the-art ML techniques for 
broad applications. These include healthcare, law, finance, 
robotics and self-driving cars. However, many of these 
techniques are virtual black boxes, that is, their decision 

Artificial intelligence (AI) provides many opportunities to improve private and public life. 
Discovering patterns and structures in large troves of data in an automated manner is a core 
component of data science, and currently drives applications in computational biology, finance, 
law and robotics. However, such a highly positive impact is coupled with significant challenges: 
how do we understand the decisions suggested by these systems in order that we can trust them? 
How can they be held accountable for those decisions?

Figure 1. Depicting 
misclassification with high 
confidence on adding an 
imperceptible amount 
of noise (adapted from 
Explaining and harnessing 
adversarial examples. (2015) 
ICLR arXiv:1412.6572v3).

logic is not understandable to us. This is very problematic 
for a number of reasons, which are perhaps best illustrated 
by the two cases below. 
 In a now widely cited experiment, a neural network 
can be guided to misclassify, with high confidence, a 
panda as a gibbon when an imperceptible amount of 
‘noise’ is added to the data (Figure 1). In domains where 
surprises are infrequent, such techniques nonetheless 
have very high accuracy across standard test images, 
and so the concern may seem needlessly pedantic. 
But in self-driving cars, where encountered images 
may have massive variability under diverse lighting 
conditions, misclassification and confusion could lead 
to serious passenger/pedestrian injuries. As an extreme 
example, imagine if the presence of background texture 
could result in a child being mistakenly identified as a 
road surface marking. To invoke a biomedical example, 
a recent prediction model for inferring the risk of death 
for patients who developed pneumonia suggested, 
counterintuitively, that asthmatics are less likely to 
die from pneumonia. The reason? Existing policy 
recommends aggressive and immediate treatment of 
asthmatics with pneumonia. Rectifying and revising the 
model is, of course, always possible, and clinicians would 
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Figure 2. A notional
plot on the trade-off 
between accuracy and
explainability (DARPA).
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not uncritically accept a machine’s opinion over their 
clinical experience. However, the take-home message 
from both cases is that we can never anticipate every 
possibility, and machine-generated patterns need to be 
scrutinized and tested, and not applied unthinkingly. 
Interpretability can also be useful in less extreme 
situations, such as approving credit card applications. 
Here, for legal reasons, we may need to justify a 
decision, and moreover, prove that no discriminatory 
action was practiced. 

Enabling interpretability

Interpretability is hard to define precisely. But perhaps 
we can draw an analogy to a dynamical system. When 
considering a moving object, we likely understand what 
caused the object to move, but also what can cause it to 
stop. Such a system can be interrogated to investigate the 
impact of changes: how much distance would the object 
have moved if it was heavier? Or the force was greater? Or 
if the floor was smoother? And so on. The system can also 
be specified concisely and so we are able to study the laws 
governing the movement. 
 Expecting learning methods to demonstrate this type 
of logic is challenging, perhaps impossible, but can be seen 
to essentially relate to ideas from the early days of AI that 
required computation and outputs to be understandable. 
Indeed, for enabling interpretability, learning methods 
increasingly draw technical concepts from classical AI.
 Conversely, are there reasons for not insisting on 
interpretability? One argument is that black box methods 
are more accurate, a view expressed by the USA’s Defense 
Advanced Research Projects Agency (DARPA) in their 
notional plot of how ML methods compare in terms of 
accuracy versus interpretability (Figure 2). This plot has 
since been criticized for being ill-defined, and in the 
case where black box methods had performed better, 

interpretable methods seem to be closing the gap. 
A second argument is that people often provide ad hoc 
rationalizations to their actions. Whilst this may be 
true (and acceptable) in social and personal situations, 
it is surely not something we would wish to aspire to 
when it comes to understanding the physical/chemical/
biological principles of the universe. A third argument 
is that all models are interpretable, all we need to do is 
read the computer code; however, even if the architecture 
and training regime are transparent, it tells us very little 
about the decision logic of the system learned over many 
training epochs and ingenious feature engineering. 
 We will now discuss various strategies for addressing 
interpretability, not all mutually exclusive and offering 
different strengths. 
 The first natural approach is that of interpretable 
model specification. This arises in the context of 
viewing tasks such as classification, prediction and 
labelling as a probabilistic computation, by appealing to 
Bayes’ law. Moreover, paradigms such as probabilistic 
programming have recently emerged to simplify the 
process of specifying a statistical model and learning 
its probabilities. A model for how infection spreads on 
contact in a population, for example, can be expressed 
using only three lines of code; the probability of an 
individual getting in contact with other members of 
the population can then be learned from data. Like 
traditional computer programs, re-usable computational 
tasks can be written in an isolated manner, and then 
referenced in a more complex instruction. Thus, 
challenging applications can be written in a principled 
way. Executing such a program would provide 
justification for an outcome, which is interpretable to 
the extent that it reflects how the probabilities were 
obtained and the prediction calculated. 
 A second approach is to learn interpretable classifiers. 
Standard ML methods such as decision trees and linear 
regression were, in fact, early examples of such an 
approach. Other more recent methods attempt to induce 
programmatic/logical structures from data. The long-
term vision is that these structures would recover the 
causal or generative process behind the data. One caveat, 
however, is whether the vocabulary of the classifier 
coincides with that of the user’s intuitive understanding 
of the problem domain: classifier features that are too 
granular or too vague will likely be hard to understand. 
We then may need to ‘map’ classifier features to terms 
that the user would find helpful and interpretable. 
 Since black box classifiers may turn out to be large 
and unwieldy, a third approach is to emphasize and 
support interactive querying. For example, if the model 
for the infection spread was obtained instead by means 
of a complex pipeline expressed using many lines of 
code, it suffices that the pathologist would be able to ask 
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observational queries such as: how does the infection 
rate differ from one social network to another? Or if 
we sampled friends from one network and found them 
infected, what does it say about the entire population? 
It may, moreover, be advantageous to move beyond 
purely statistical associations. In the case of the European 
Union’s General Data Protection Regulation, an argument 
has been made recently for supporting counterfactual 
querying. For example, when confronted with the 
decision that one’s credit card application was denied, the 
model would suggest how certain types of changes to the 
applicant’s circumstance would get the decision reversed. 
 In general, counterfactual querying is a type of causal 
inference, which requires us to specify not only the 
probabilistic dependencies between variables but also 
the mechanism that determines the values of variables. 
This can be hard to identify in the absence of experts. It 
is also worth remarking that most ML models inherently 
appeal to statistical associations and so one could accuse 
all of them of not possessing a decision logic per se. Thus, 
empowering statistical methods with causal, analogical 
and logical structures will perhaps be needed eventually 
to generate explanations with a clear decision logic. 
 For black box classifiers, a fourth approach attempts 
to construct summaries by inspecting, augmenting or 
otherwise approximating the decision logic of the model. 
In particular, proposals on post hoc interpretability 
sample very close to the region of interest, and then 
an interpretable classifier is generated that serves as a 
local approximation. However, such approaches have 
since been criticized because it is not always clear that 
these approximations are faithful to how the model 
actually works. 
 If we reconsider the dynamical system analogy, 
there may be a distinction to be made between having 
an interpretable model, where an expert is in a position 
to understand the nature of the computation and the 
output in principle, versus obtaining an explanation. In 
this sense, an extremely large decision tree or induced 
program may seem impenetrable to a lay person. How 
to enable such explanations is a point of debate and 
part of ongoing research. While textual and visual 
rationalizations are always possible on an ad hoc basis, 
social scientists and philosophers have argued that 
explanations need to be contrastive (why this and not 
that), minimal (clarifying the relevant entities) and 
social (taking the asker’s knowledge into account). Thus, 
approaches that leverage causal inference while positing 
a mental model of the user are likely to be successful for 
generating explanations at this level of sophistication. 

Towards responsible AI

Enabling interpretability is one concrete way for the 

responsible deployment of AI systems, but it is far from 
the only one. When we consider that AI-based predictions 
act on people, we need to champion responsible 
deployment more generally. As a consequence of datasets 
reflecting decades of historical and cultural biases, there 
is growing alarm that ML systems continue to manifest 
inherited prejudices against certain groups. In one recent 
case of considerable notoriety, Pro-Publica, a USA-based 
organization specializing in not-for-profit journalism, 
published an article suggesting that an algorithm widely 
used to predict the probability of re-offence in criminals 
was biased against African-American offenders. While 
the analysis of that article has since been criticized for 
misunderstanding the original algorithm’s risk allocation 
measures, there is still the potential for injustices to arise 
as a consequence of data hinging on sensitive factors 
that may be difficult to identify. In fact, the data need 
not even be biased against certain groups; it suffices that 
the data is representative of one group, say Caucasians, 
but is nonetheless deployed in a diverse world, leading to 
invalid or offensive predictions. 
 A growing literature now attempts to force classifiers 
to be fair, in the sense of ensuring that predictions do not 
change based on sensitive factors. For example, the notion 
of predictive parity says that a classifier is considered fair if it 
is equally likely to make a positive identification regardless 
of the value of a sensitive factor, such as gender. Not 
surprisingly, at this early stage, there is still considerable 
debate on which definition correctly formalizes equality 
and demographic parity, especially owing to the fact that 
some of these definitions are mutually inconsistent, and 
how that should be implemented. 
 Fairness, is however, one part of a larger picture 
on making AI responsible. Value alignment is a notion 
that attempts to ensure that a system’s objectives align 
with human values. But this can be challenging to 
realize because human society can disagree significantly 
on which values matter. Our views on, for example, 
the ethical treatment of peoples and other animals, 
has changed radically in the last century alone, and 
classical thought experiments such as the trolley 
problem (see Figure 3) remain notorious, unresolved 
and controversial. Even if we agreed on such values, 
there are long-standing concerns about translating 
ethical principles into a framework based on numeric 
representations, denoting, say, a consequentialist stance 
(i.e., one based on outcomes). Nonetheless, progress 
is perhaps only possible by stipulating models and 
hypotheses, and despite its delicate nature, numeric 
models are not uncommon in social contexts, such as 
the use of quality-adjusted life years within healthcare 
and the value of life within economic and insurance 
policies. Frameworks have thus been emerging to 
provide computational mechanisms for representing and 
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Figure 3. Should one pull 
the lever to divert the 
runaway trolley onto the 
sidetrack? (Wikipedia).
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reasoning about ethical decisions. The crucial step when 
allowing systems to reason about their action choices 
is to postulate the utilities and costs of those choices, 
which can determine the more responsible thing to do. 
In the context of, say, lung cancer staging, such costs can 
represent a decision strategy: a thoractomy is the usual 
treatment unless the patient has mediastinal metastases, 
in which case a thoractomy will not result in greater 
life expectancy than the lower risk option of radiation 
therapy, which might then be the preferred treatment. In 
the trolley problem, where a runaway trolley on a path 
to kill five people can be diverted to a sidetrack that kills 
one person, costs can denote a composite of emotive and 
analytic traits of the decision maker. In empirical studies, 
major differences have been observed across cultures 
when considering situations that variably introduce 
elderly people, children, pets and family members on 
the main and sidetracks. Thus, one could view such 
frameworks as a means to provide, on the one hand, 
a higher degree of autonomy for reasoning about the 
consequences of actions, and on the other, personalized 
models learnt from data that encode moral preferences. 
Contextualizing these preferences is very important; 
for example, we would consider it immoral to harvest 
a healthy person’s organs to save five people. Moreover, 
responsibility and interpretability are interlinked: to 
prove a claim that one was unbiased and morally right, 
say in a court of law, an explanation is needed as to why 
the disputed action was taken in the first place. 
 Ultimately, the goals of the emerging trends in 
interpretable and responsible AI can be seen as an 
attempt to enable technology that benefits human 
society. This places serious demands on the accessibility 
and justifiability of that technology, which effects and 
is affected by political and public discourse on the use 
of AI. The scientific endeavour is simply the start of a 
dialogue, and mathematical advances allow us to be 
increasingly concrete in the applications considered and 
the broader impacts thereof. ■
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