
Neuro-Symbolic Artificial Intelligence:
The State of the Art

Pascal Hitzler a and Md Kamruzzaman Sarker b

a Kansas State University
b University of Hartford

Contents

1. Logic meets Learning: From Aristotle to Neural Networks 1
Vaishak Belle

Chapter 1

Logic meets Learning: From Aristotle to
Neural Networks

Vaishak Belle, University of Edinburgh, UK

The tension between deduction and induction is perhaps the most fundamental issue in
areas such as philosophy, cognition and artificial intelligence. In this chapter, we survey
work that provides evidence for the long-standing and deep connections between logic
and learning. After a brief historical prelude, our narrative is then structured in terms of
three strands of interaction: logic versus learning, machine learning for logic, and logic
for machine learning, but with ample overlap.

1.1. Introduction

Deduction is the process of drawing conclusions from acquired or specified knowledge.
So we focus on questions about the expressiveness of formal languages for representing
knowledge, together with proof systems for reasoning from that knowledge. Induction
is the process of extracting knowledge from observations. So we focus on the semantics
of generalization from partial descriptions, together with the target language for repre-
senting and the algorithms for computing that generalization. Consequently, frameworks
for integrating the two mechanisms in service of artificial or natural cognition is of fun-
damental theoretical and practical import. Conceptually, the matter is clearly relevant
to areas such as philosophy, cognitive science and artificial intelligence, but on a prac-
tical level, it impacts science broadly as it attempts to balance expert knowledge with
empirical data.

Somewhat surprisingly, historically, approaches to reasoning and learning in AI have
attempted to make progress on the topic of cognition almost independently of each other.
However, advances in cross-over areas such as statistical relational learning [1, 2], high-
level control [3, 4] and most recently, neuro-symbolic systems [5, 6, 7, 8] have illustrated
that the dichotomy is not very constructive, and perhaps even ill-formed. Such areas
correctly argue that logic emphasizes high-level reasoning, and encourages structuring
the world in terms of objects, properties, and relations. In contrast, much of the inductive
machinery assume random variables to be independent and identically distributed, which
can be problematic when attempting to reason about (physical and social) relationships
between groups of objects.

The need to integrate logic and learning can also be motivated without resorting to
the apparent flexibility that logical syntax offers for modeling relations and hierarchies.
To tackle artificial cognition, it seems we might need to consider approaches that sym-
bolic logic and machine learning struggle to duplicate in functionality individually. For
example, although there is much debate about what precisely commonsense knowledge
might look like, it is widely acknowledged that concepts such as time, space, abstraction
and causality are essential [9, 10]. Low-level sensory data can be processed by machine
learning, but beyond that, (classical, or perhaps non-classical) logic can provide the for-
mal machinery to reason about such concepts in a rigorous way. Indeed, it is worth not-
ing that attempts to logically formalize generalizations of sensory data (vision, audio,
and so on) have not been successful – they have either proven to be too coarse or too
brittle to deal with variations seen in the real-world [11]. So a logical theory for unifying
top-down and bottom-up processing also seems infeasible.

In more immediate terms, despite the success of methods such as deep learning, it is
now increasingly recognized that owing to a number of reasons, including model re-use,
transferability, explainability and data efficiency, those methods need to be further aug-
mented with logical, symbolic and/or programmatic artifacts [12, 13, 14]. Likewise, for
building intelligent agents, low-level, data-intensive, reactive computations needs to be
tightly integrated with high-level, deliberative computations [3, 4, 15], the latter possi-
bly also engaging in hypothetical and counterfactual reasoning. Here, a parallel is often
drawn to Kahneman’s so-called System 1 versus System 2 processing in human cogni-
tion [16], in the sense that experiential and reactive processing (learned behavior) needs
to be coupled with cogitative processing (reasoning, deliberation and introspection) for
sophisticated machine intelligence. (Of course, this is not to suggest that developments
in one equates to insights in the other, or even that abstract models can easily imbibe
cultural and sociopolitical norms in a straightforward manner.)

The purpose of this chapter is not to resolve this debate, but rather briefly survey
work and distill representative ideas that provide evidence for the deep connections be-
tween logic and learning. We begin with historical developments before turning to the
ways we will distill those ideas.

1.2. Lineage

Our goal here is to trace a very rough lineage of ideas. It would be impractical to discuss
the intricate philosophical and mathematical issues that arise in logic, learning and their
integration. The historical developments of inductive reasoning alone is significant and
complex, surely worthy of a book in itself. Likewise, there are various book-length treat-
ments on subfields such as statistical relational learning [2, 1], and of course, the current
book on neuro-symbolic learning.

So we are organized as follows. We begin with the type of formal reasoning that
distinguishes this enterprise from conventional machine learning: the presence of logical
artifacts, their use for postulating hypotheses by arranging symbols, and deriving con-
clusions in a truth-preserving manner. Formal logic, in the vast majority of applications,
is concerned with deduction after all. This then provides the background for introducing
induction, some of the modern flavors of which are the focus of the rest of the chapter.
We also briefly position abduction, a reasoning approach for most likely explanations.

We remark that this article is undoubtedly a biased view, as the body of related
work is large, touching on multiple sub-areas of AI, computer science, philosophy and
cognitive science [17]. Readers are encouraged to refer to discussions in our references,
among others, to get a sense of the breadth of the area.

1.2.1. Deduction

Deductive reasoning goes back at least to 4th century BC. In a collection of works, Aris-
totle suggested the use of syllogisms as a means to arrive at new and necessary truths.
New, because the conclusion is not present in the premise, and necessary, because the
conclusions are inescapable – provided the rules of inference are irrefutable. As a mech-
anism for reasoning about discourse and arguments, it is clearly attractive to carefully
work out what to infer from a set of premises and it ultimately influenced philosophy
considerably [18, 19]. Leibniz, in particular, felt that just as the rules of arithmetic manip-
ulate abstract numbers symbolically, the rules of logic would manipulate abstract ideas
symbolically too [20]. Thus, logical reasoning had long been identified with rational
thought [21, 22].

It was only much later, in the 19th century primarily, that efforts to algebraize and
equationalize logical reasoning by Boole, Frege and others led to formal systems like
the ones in use today in computer science and AI. Nowadays, we associate deductive
reasoning with at least the following three rules of inference [23, 24, 25]:

• Modus Ponens. Suppose p gives q. Assume p. Therefore q.
• Modus Tollens. Suppose p gives q. Assume ¬q. Therefore ¬p.
• Syllogisms. Suppose p gives q. Suppose q gives r. Assume p. Therefore r.

(Syllogisms could also take the form of Modus Ponens.) These could be further com-
bined with quantifiers, which allow rules such as:

• Universal instantiations. Assume ∀x P(x). Therefore P(t) for any term t. Terms
are constants, or variables, or functions applied to constants and variables.

It is the application of universal instantiations with syllogisms that allows Aristotelean
arguments such as: all humans are mortal; Socrates is human; therefore, Socrates is mor-
tal.

Given a set of sentences, or theory, T in a logic L, we are interested in the following
question: assume T ; is α ∈ L a logical consequence of T by way of deduction? We
could arrive at α either by substituting sentences from T in the rules of inference – i.e.,
proof-theoretically, or by trying out truth value substitutions to the atoms in T – i.e.,
semantically. In the latter case, every substitution where T evaluates to true must also be
one where α evaluates to true. The celebrated Gödel completeness theorem established
the correspondence between these two views: for any T,α in first-order logic, if α is a
semantic consequence of T , written T |= α , then there is a proof of α from T , written
T ` α .

In the 1960s, resolution, which compacts syllogistic reasoning, was established as a
single rule of inference that is complete in the above sense for first-order logic. Together
with its straightforward application in Horn clausal logic, the development of logic pro-
gramming and Prolog burgeoned [26]. While all of this is proof-theoretic machinery, se-

mantic solvers have also matured. SAT (Satisfiability) and SMT (Satisfiability Modulo
Theory) solvers attempt to find satisfying assignments to propositional and fragments of
first-order logic [27]. Like resolution, semantic approaches determine T |= α by refuta-
tion: T |= α if and only if T ∧¬α has no satisfying assignment. Early SAT solvers used
backtracking to search the space of all possible truth value substitutions; modern solvers
use a range of advanced techniques from local search (sound but not complete), conflict
analysis and parallelization [27].

It is interesting to note that Gödel’s other ground-breaking result, the incompleteness
theorem, might have led Turing to believe that intelligent machines need a mechanism for
induction [28]. The incompleteness theorem states that any first-order logical theory T ,
which includes Peano’s axioms for natural numbers, is either inconsistent or incomplete.

We now briefly review induction, i.e., learning by generalizing from observations.
Note that this is not to be confused with mathematical induction, which is used to prove
properties for an infinite sequence of objects, and is a form of deduction.

1.2.2. Induction

Not surprisingly, inductive reasoning has been a core issue for the logical worldview,
as we need a mechanism for obtaining axiomatic knowledge. Here too, discussions date
back to the early Greek philosophers: Aristotle suggested that we need the means for gen-
eralizing an argument from the particular to the universal. That is, deduction produces
new knowledge in the form of conclusions not explicitly stored in the knowledge base
as beliefs, and induction produces new knowledge via statements evidenced only in in-
dividual instances. But this knowledge is not necessary in the sense of being irrefutable.
If a counterexample were provided, the induced statement would have to be amended or
in the worst case retracted. The often used example here is that of believing that swans
are white until one encounters the less common black swan. It is this fragility of induced
beliefs that Hume alluded to in his criticisms of inductive reasoning [29].

However, the usefulness of learning from observations as a mechanism for produc-
ing knowledge has led to numerous accounts of induction. For example, through the de-
velopment of the mathematical area of Statistics, assessing hypotheses has a rigorous
regime in many scientific fields. But prominent philosophers, such as De Finetti and
Carnap, were also interested in formal accounts of induction [30, 31, 32, 33]. Carnap
in particular considered how such statistical notions of evaluating hypotheses could be
formulated in first-order logic. Indeed, rather than seeking a generalization (or hypoth-
esis) H that explains all the observations O, we might construct a hypothesis H ′ such
that Pr(O | H ′) is maximized, where the probability function Pr captures the degree of
support for H ′.

Since the birth of the field of AI, Plotkin [34], Michalski [35], Shapiro [36], Mug-
gleton [28], De Raedt [37] and others established practical inductive reasoning systems
in first-order logic based on generalizing clauses that entail the examples, but variant ac-
counts were developed too, such as the information-theoretic approach of Quinlan [38].
These could be contrasted with much of early (but also many modern) machine learning
frameworks (or leaners) that are propositional. They also lack a general solution for the
provision of axiomatic background knowledge.

1.2.3. Abduction

Although we solely focus on the interaction between deduction and induction here, one
other type of logical reasoning is very relevant in our context. Developed by Charles
Sanders Pierce [39], abduction allows us to infer a hypothesis as a plausible explana-
tion for an observation. The “deductive” capabilities that the fictional detective Sherlock
Holmes was most famous for are, in fact, instances of abduction [40]. From a logical
perspective, abductive hypotheses might appear to have a similar semantical requirement
as inductive hypotheses, in the sense of constructing a sentence such that together with
the background knowledge, the examples are entailed. However, while in induction we
seek a clause that generalizes examples, in abduction, given a clause that makes a general
claim and observations that agree with the conclusion of that claim, we offer the premise
of the clause as a plausible explanation. For example, if all swans from Australia are
black, and we observe a swan that is (unusually) black as opposed to the white swans we
usually encounter, we conclude that the swan must be from Australia.

We will not dwell on abduction anymore, but note that, for example, in [41, 42], a
case is made for neuro-symbolic integration as an abductive process. Even earlier to this,
Poole [43, 44] established a semantic foundation for a probabilistic logic programming
language called ICL (independent choice logic) via abduction. ICL is a precursor of
many probabilistic logical modeling languages seen in statistical relational learning [1].

1.2.4. A Modern Desiderata

In the recent years, there has been tremendous development on the interface between
learning and logic, and symbolic structures more generally [45]. The impetus for these
developments stems from the fact that symbolic logic served as the calculus for modeling
information in artificial intelligence and computer science for several decades [46, 47].
But the sheer intricacy and noise in the real-world coupled with the incompleteness of
specifications and requirements at the start of any problem solving endeavor has moti-
vated modelers to look to data for completeness and robustification.

This is not without its challenges, however. A great deal of effort is needed to adapt
conventional learners based on labelled-data to the involved syntactic structures widely
used in computer science and artificial intelligence, including exotic logics and programs.
In fact, just the extension of learning schemes from atomic random variables to clausal
logic and probabilistic extensions of clausal logic has led to the subfields of inductive
logic programming and statistical relational learning. These subfields continue to enjoy
active development [48, 49].

But leaving such syntactic matters aside, there are a number of fundamental ques-
tions that probe at the heart of the logic-learning enterprise, such as:

• What knowledge does a system need to have in advance – i.e., provided by the
modeler – versus what can be acquired by observations?
That is, are we only learning the probabilities of a given knowledge base, or are
we also learning the knowledge base itself? Do we need to assume the provision
of some background knowledge before the learning process is initiated (i.e., the
question of what is innate to the agent before it can effectively learn from its envi-
ronment)? Is this determined on a case-by-case basis, or can we arrive at broader
conditions for this delineation?

• What is the language for representing and reasoning with the background knowl-
edge and observations?
That is, is it propositional, first-order, modal, or some probabilistic extension
thereof? Do we assume the provision of labeled training data denoting the obser-
vations, or are we considering systems that purposefully act in an environment,
and then receive observations and rewards as a result of those actions?

• What kind of semantics governs the updating of a priori knowledge given new and
possibly conflicting observations?
That is, do we assume all observations are provided before the hypothesis is gener-
ated? What is the appropriate mechanism for learning the rules and repairing them
as more, and possibly, conflicting observations are made? Do we have a means
to quantify the generalization capabilities of the learner with respect to unknown
ground truth?

• What are the rules of inference that apply to the resulting knowledge base?
That is, is the query language unrestricted wrt logical connectives? Do we permit
proofs of arbitrary depth? What is the mechanism for requesting “shallow” versus
“deep” reasoning (e.g., quickly reacting to a tiger versus reflecting on the nature
of the universe)?

• How does the system generalize from low-level observations to high-level struc-
tured knowledge?
That is, do we assume the vocabulary of the high-level language is available a
priori, or do we need to discover a (possibly hierarchical) mapping between high-
level predicates and low-level atomic observations? Is there a means to generate
examples to support or refute a claim made using high-level predicates?

To a large extent, much of the recent work on logic and learning, including deep
learning, are attempting to address such questions by formulating methodological or al-
gorithmic solutions. It would be impossible to report on every such development, of
course, so in this chapter we mainly look at some representative ideas. Our narrative is
structured in terms of three strands, inspired by [50]:

1. Logic versus Machine Learning: the study of problems that can be solved using
either logical techniques or via machine learning;

2. Machine Learning for Logic: the learning of logical formulas and logic programs,
but also the use of machine learning to guide search; and

3. Logic for Machine Learning: the use of logic to enhance machine learning, iden-
tify the boundary between tractable and intractable learning problems, and as a
declarative language for expressing machine learning problems.

At the outset, we note that the focus is on logical languages, in the sense of a formal
framework embodying inference rules in the manner discussed earlier, and not simply the
induction of symbols lacking a formal semantics. In a way, symbolic induction is much
larger and more ambiguous problem space: after all, even conventional neural network
outputs can be interpreted symbolically.

Through the course of our discussion, we also focus on the following sore point:
there is a common misconception that logic is for discrete properties, whereas probability
theory and machine learning, more generally, is for continuous properties. It is true that
logical formulas are discrete structures, but they can very easily also express properties

about countably infinite or even uncountably many objects. Consequently, in this article
we survey some recent results that tackle the integration of logic and learning in infinite
domains.

It is worth remarking that the importance of logic programming to the thrust of this
article cannot be overstated. Indeed, it is logic programming that set the stage for numer-
ous deduction-based programming languages, from declarative modeling [26, 51] to rea-
soning about choices and probabilities [43, 1] to reasoning about actions and plans [52].
Likewise, inductive logic programming set the stage for major practical advances on
learning theories and programs [28, 49]. Probabilistic extensions to logic programming
and inductive logic programming [1], which we also touch upon in the below subsection,
continue to invite new integrations of relational and graph-based modeling with learning.
Many neural learning schemes to integrate logical reasoning do so via logic program-
ming [14]. Thus, although various other languages are being developed too, logic pro-
gramming provides a convenient and fairly accessible apparatus to integrate reasoning
and learning, and study questions of the sort discussed earlier.

1.2.5. Logic & Probability

Before turning to the three strands, let us briefly reflect on a very related enterprise,
that of bridging logic and probability. In so much as one would view induction as a
probabilistic process, our discussions above already suggest deep connections between
logic and probability. But there is much more to be said about the role of probabilities
for logic, and vice versa.

Philosophers from the 19th century, including John Stuart Mill and George Boole,
felt (human) reasoning would involve both logic and probability. In the earliest days of
AI, McCarthy [53] put forward a profound idea: he posited that what the system needs
to know could be represented in a formal language, and a general-purpose algorithm
would then conclude the necessary actions needed to solve the problem at hand. The
main advantage is that the representation can be scrutinized and understood by external
observers, and the system’s behavior could be improved by making statements to it.
All of this was ultimately grounded in logic, of course. But pervasive uncertainty in
almost every domain of interest led to alternative formalisms for representing knowledge.
Uncertainty could range from measurement errors (e.g. readings from a thermometer)
to the absence of categorical assertions (e.g. smoking may be a factor for cancer, but
cancer is not an absolute consequence for smokers) to “latent” factors that the modeler
may simply not have taken into account, all of which question the legitimacy of the
expert knowledge. Moreover, classical logic is seen as being “rigid” (sentences always
evaluate to true or false) and “brittle” (sentences in the knowledge base must be true in all
possible worlds). Although this in turn led to probabilistic formalisms such as Bayesian
and Markov networks, as argued the relational structure of the world has meant we have
now come a full circle: probabilistic logics are logical languages that admit probabilistic
assertions [54, 55, 56]. Semantically, in classical logic, T |= α implies that every truth
assignment where T is true is also one where α is true. In probabilistic logics, logical
and probabilistic assertions in T mean that there is a measure on the the set of truth
assignments, and we are often interested in the probability of α being true.

Currently, the most popular flavors of such probabilistic logics are syntactic exten-
sions to probabilistic formalisms, as seen in statistical relational learning [1]. That is,

the use of logical syntax allows one to define an involved probabilistic model, but it can
often be interpreted at a propositional level with probabilities over propositional inter-
pretations. For example, the weighted formula [1]:

0.9 ∀x,y. (Smokers(x)∧Friends(x,y)⊃ Smokers(y))

over a finite universe corresponds to a fully interconnected Markov network; the ran-
dom variables in the network are obtained from all the ground atoms. This sentence says
that the likelihood of friends of smokers being smokers themselves is very high. Like-
wise, when logic programs are decorated with probabilities, it enables reasoning about
possible worlds and can capture intricate probabilistic models involving deterministic
and stochastic constraints [43, 57]. For a slightly more complex version of the friends-
smokers example from above in ProbLog [57], one such logic programming language,
consider the below program:

0.1::stress(X) :- person(X).

0.2::friend(X,Y) :- person(X), person(Y).

smokes(X) :- stress(X).

smokes(X) :- friend(X,Y), smokes(Y).

This program says that the likelihood of a person being stressed is low, as is the
likelihood of two people taken at random being friends. However, stress categorically
leads to smoking, and friends of smokers are certainly smokers too.

Interestingly, such logical languages for probabilistic modeling also enables the use
of logic-based inference technology, which we will be review further in the subsection
below.

Formulating probabilistic graphical models as weighted logical formulas is an ele-
gant approach to decouple the constraints and dependencies from the probabilistic pa-
rameters. However, at a conceptual level, there is little gained as we are still embedded
in the framework of standard probability theory. When the representation language is
thought of as a model of a system’s mental state, we need to be able to reason about
probabilistic events in a more general way. For example, we may need to compare the
probabilities of hypothetical outcomes, or analyze the behavior of non-terminating ac-
tion sequences. In some cases, we may even be ignorant about the actual probabilities of
events. Such concerns were raised already by McCarthy and Hayes [58], who argued that
assigning probabilities to quantifiers and logical connectives is not straightforward, and
it should not be required that every statement be accorded a probability. This then leads
to extensions of first-order logic that allow classical first-order sentences to be declared
alongside weighted assertions, in addition to any dynamic and causal laws about how
objects and actions interact in the world [59, 55, 60, 61]. For example, such languages
can express statements such as:

• Pr(p)> Pr(q) and Pr(p)< [a]Pr(p)
• Pr(∀x Q(x)) 6= 0
• 2(Pr(p∨q) = Pr(p)+Pr(q)−Pr(p∧q))

These say that (respectively): the probability of p is more than that of q, that of p becomes
lesser after doing action a, the probability ascribed to all instances of Q being true is

non-zero, and after any number of actions, the axiom of probability regarding the union
of events necessarily holds. Consider, for example, p to denote that a robot is close to the
wall; if a is the action of moving away from the wall then surely Pr(p)< [a]Pr(p).

Although such logics are often intractable when taken in their full generality, the
view taken is that as a language, it should be as general as possible: we are then in a
position to investigate fragments that enjoy reasonable computational properties.

Before concluding this interlude, it is worth remarking about two classes of develop-
ment. First, there are a number of results that allude to the statistical properties of logic.
For example, an influential result by Fagin [62] established the Zero-One Law for first-
order logic. For any first-order formula φ , consider the probability Prn of φ being true
in first-order interpretations of size n. As n tends to infinity, Prn(φ) will either be 0 or 1.
Likewise, the discovery of a phase transition phenomena for propositional satisfiability
[63] also implies profound probabilistic properties underlying logical reasoning. Second,
probabilities are but one approach to quantify uncertainty, perhaps the most common and
an obvious choice for many modeling situations. Of course, there are other approaches
for specifying priors and defining posteriors [64]. One proposal that attempts to redefine
logical truth altogether is fuzzy logic and related proposals [65]. These relax the truth
value to atoms: in classical logic, we assign either a value of 1 or 0; in these logics, they
can be any real number in the interval [0,1]. Consequently, the truth value of non-atomic
formulas is then defined as an arithmetic function over such real numbers. As process-
ing functions over such real numbers is simpler in some situations than reasoning about
possible worlds as required by probability theory, real-valued logics are very popular in
both statistical relational learning [66] and neuro-symbolic learning [67].

In what follows, we mostly restrict our attention to either classical or probabilistic
logical languages, but as the above discussion indicates, other approaches are available,
and they come with their own distinctive features.

1.3. Logic versus Machine Learning

To appreciate the role and impact of logic-based solvers for machine learning systems,
it is perhaps useful to consider the core computational problem underlying (probabilis-
tic) machine learning: the problem of inference, including evaluating the partition func-
tion and conditional probabilities of a probabilistic graphical model such as a Bayesian
network.

When leveraging Bayesian networks for machine learning tasks [68], the networks
are often learned using local search to maximize a likelihood or a Bayesian quantity.
For example, given data D and the current guess for the network N, we might estimate
the “goodness” of the guess by means of a score: score(N,D) ∝ logPr(D | N)− size(N).
That is, we want to maximize the fit of the data wrt the current guess, but we would
like to penalize the model complexity, to avoid overfitting. Then, we would opt for a
second guess N′ only if score(N′,D)> score(N,D). Note that in as much as N represents
a (scientific) hypothesis, and D represents the observations, we are very much following
in the spirit of early work by Carnap and others on evaluating hypotheses via Pr(O | H).

1.3.1. Weighted Model Counting

Needless to say, even with a reasonable local search procedure for guessing hypothe-
ses, the most significant computational effort here is that of probabilistic inference. Rea-
soning in such networks becomes especially challenging with logical syntax. Intuitively,
where previously we wished to draw samples z1, . . . ,zk from a distribution, we would
now need to ensure that these samples are consistent with logical constraints that might
need to be always true. These constraints can be thought of as making arbitrarily com-
plex regions of the probability space invalid, and so can very challenging to efficiently
sample from.

The prevalence of large-scale social networks, machine reading domains, and other
types of relational knowledge bases has led to numerous formalisms that borrow the
syntax of predicate logic for probabilistic modeling [69, 70, 71, 72]. This has led to a
large family of solvers for the weighted model counting (WMC) problem [73, 74]. The
idea is this: given a Bayesian network, a relational Bayesian network, a factor graph, or
a probabilistic program [75], one considers an encoding of the formalism as a weighted
propositional theory, consisting of a propositional theory ∆ and a weight function w that
maps literals in ∆ to R+. Recall that SAT is the problem of finding an assignment to
such a ∆, whereas #SAT counts the number of assignments for ∆. WMC extends #SAT
by computing the sum of the weights of all assignments: that is, given a set of models
that satisfy ∆, we evaluate the quantity W (∆) = ∑M|=∆ w(M) where w(M) is factorized in
terms of the literals true at M. To obtain the conditional probability of a query q against
evidence e (wrt the theory ∆), we define Pr(q | e) = W (∆∧ q∧ e)/W (∆∧ e). (Although
widely practiced, it turns out that factorization of the weight function in terms of literals
is limiting: not only does it necessitate the need for additional variables and clauses, but
it also constraints the space of discrete probability distributions that can be captured by
WMC. See [76, 77] for discussions on alleviating this restriction.)

The popularity of WMC can be explained as follows. Its formulation elegantly de-
couples the logical or symbolic representation from the numeric representation, which
is encapsulated in the weight function. When building solvers, this allows us to reason
about logical equivalence and reuse SAT solving technology (such as constraint propa-
gation and clause learning). WMC also makes it more natural to reason about determin-
istic, hard constraints in a probabilistic context [74]. For ideas on generating such repre-
sentations randomly to assess scalability and compare inference algorithms, see [78], for
example.

Exact WMC solvers are based on knowledge compilation [79, 80], exhaustive DPLL
search [81] or pseudo-Boolean function manipulation [82, 76, 77]. Approximate WMC
algorithms use local search [83] or sampling [84]. Here, knowledge compilation is worth
particularly highlighting, where the logical theory is transformed to a data structure
called a circuit [74]. Knowledge compilation [85] arose as a way to represent logical
theories in a manner where certain kinds of computations (e.g., checking satisfiability)
is significantly more effective, often polynomial in the size of the circuit. In the context
of probabilistic inference, the idea was to then position probability estimation to also be
computable in time polynomial in the size of the circuit [74, 86]. In the recent years,
knowledge compilation has also been extended to probabilistic relational models (but in
a finite domain setting) [87], referred to as lifted inference.

In sum, the discussion above suggests using WMC to compute Pr(D | N), especially
if N has logical syntax. Implicit in the suggestion is that the probabilistic estimation

machinery of WMC could also be used for tasks such as parameter learning. Roughly, if
the hypothesis is a probabilistic representation, as is the case in this section, the structure
determines the conditional dependencies between random variables, and the parameters
determines the probability function associated with those variables. Parameter learning
involves computing the likelihood of a guessed weight against the data, and so WMC
can be used for that probabilistic estimation. But, of course, it is also possible to consider
structure learning while using WMC for appropriate probabilistic estimation tasks. In
particular, if N is logical artifact, then this is the case of using machine learning for logic
– our next section – where we will consider this task in more detail. In the first instance,
for example, [88] provides an end-to-end treatment of parameter and structure learning
with probabilistic logical representations.

1.3.2. Beyond Propositional Languages

Lifted reasoning techniques attempt to leverage the relational structure of probabilistic
logical models so as to avoid the exponentially large propositional theory that may result
if the variables are substituted by constants. For example, the formula ∀x(P(x)∨Q(x))
has 3n models (out of the 4n possible assignments for a domain of size n leading to 2n
propositions in the ground theory). But still n is a fixed natural number. Thus, there is a
computational benefit, but logically, we might as well assume a propositional language,
and the formulation is limited to discrete random variables. At least on the logical front,
a similar observation can be made for SAT, which for the longest time could only be
applied in discrete domains. This changed with the increasing popularity of satisfiabil-
ity modulo theories (SMT) [89], which enable us to, for example, reason about the sat-
isfiability of linear constraints over the reals. Extending earlier insights on piecewise-
polynomial weight functions [90, 91], the formulation of weighted model integration
(WMI) was proposed in [92]. WMI extends WMC by leveraging the idea that SMT theo-
ries can represent mixtures of Boolean and continuous variables: for example, a formula
such as p∧ (x > 5) denotes the logical conjunction of a Boolean variable p and a real-
valued variable x taking values greater than 5. For every assignment to the Boolean and
continuous variables, the WMI problem defines a weight. The total WMI is computed by
integrating these weights over the domain of solutions to ∆, which is a mixed discrete-
continuous (or simply hybrid) space. Consider, for example, the special case when ∆ has
no Boolean variables, and the weight of every model is 1. Then, the WMI simplifies to
computing the volume of the polytope encoded in ∆. When we additionally allow for
Boolean variables in ∆, this special case becomes the hybrid version of #SAT, known as
#SMT [93]. In particular, previously we assumed that w mapped literals in ∆ to R+, but
now we will allow the mapping to any arithmetic expression to capture density functions.
For example, mapping an interval 0 < x < 5 to a number 0.3 would capture a piecewise-
constant density, but if mapped to x3, we would be admitting piecewise-polynomial den-
sities. WMI is defined in much the same way as WMC as the sum of weights of models,
except that we would need to additionally integrate the density function.

Since that proposal, numerous advances have been made on building efficient WMI
solvers (e.g., [94, 95, 96]), including the development of knowledge compilation strate-
gies for the extended language [97, 98, 99]. In [100], a lifted strategy for WMI is consid-
ered.

WMI proposes an extension of WMC for uncountably infinite (i.e., continuous) do-
mains. What about countably infinite domains? The latter type is particularly useful for

reasoning in quantified first-order settings, where we may say that a property such as
∀x,y,z(parent(x,y)∧ parent(y,z) ⊃ grandparent(x,z)) applies to every possible x,y and
z. Of course, in the absence of the finite domain assumption, reasoning in the first-order
setting suffers from undecidability properties, and so various strategies have emerged for
reasoning about an open universe [101]. One popular approach is to perform forward
reasoning, where samples needed for probability estimation are obtained from the facts
and declarations in the probabilistic model [101, 102]. Each such sample corresponds to
a possible world. But there may be (countably or uncountably) infinitely many worlds,
and so exact inference is usually sacrificed. A second approach is to restrict the model
wrt the query and evidence atoms and define estimation from the resulting finite sub-
model [103, 104, 105], which may also be substantiated with exact inference in some
cases [106, 107]. For example, in [106, 107], the following property is proved: given a
first-order clausal theory ∆ where the universal quantifier ranges over a countably infinite
set and a ground query α , ∆ |= α can be determined via refutation in a propositional
language with finitely many propositional variables. In general, if we are able to estab-
lish results where first-order properties in a restricted fragment can be reduced to propo-
sitional reasoning, we might look to consider reasoning and learning with probabilistic
extensions to such fragments.

In the next section, we will be interested in the learning of logical artifacts. Given
the successes of logic-based solvers for inference and probability estimation, the next
section will also feature the application of such solvers to learning models with relational
features and deterministic constraints.

1.3.3. Neurally-guided Search

Before turning to the next section, it is worth briefly reflecting where recent advances in
machine learning, particularly deep learning, might play a role. This avenue is burgeon-
ing so rapidly it would be difficult given the scope of this article to discuss representative
ideas in any suitable detail. Thus, we will only mention a few interesting trends, for each
of the three strands of logic vs learning (discussed immediately below), learning for logic
and logic for learning (in subsequent subsections).

To begin with, the learning of hypothesis and representations is clearly one venue
where mainstream learners could prove useful, but we defer this to the next section. As
far as inference is particularly concerned, there have been initiatives to search for log-
ically consistent artifacts via deep learning. (The precursor of this is perhaps classical
clausal search in inductive logic programming, defined by the generality of the clauses,
over some structured hypothesis space.) These artifacts could be satisfying assignments,
program completions, and more generally, theorems. For example, in [108] the discov-
ery of first-order theorems is enabled by empowering the search of proofs with learning.
In [109], the search for solutions for NP-complete problems is explored via graph neu-
ral networks [7]. In [110], the completion of programs against a partial specification –
i.e., partially-specified program – is augmented using learning. The key trade-off worth
noting here is the balance of prediction against explicit symbolic reasoning to achieve
maximal logical consistency. Finally, in [111], the approximation of WMC is explored
via deep learning.

1.4. Machine Learning for Logic

Expert knowledge is hard to come by, difficult to articulate at different levels of granu-
larity and is often brittle. We need a mechanism for obtaining axiomatic knowledge.

1.4.1. Entailment versus Bayesian Scoring

The learning of logical and symbolic artifacts is an important issue in AI, and com-
puter science more generally [45]. There is a considerable body of work on learning
propositional and relational formulas, and in context of probabilistic information, learn-
ing weighted formulas [50, 112, 113, 1]. Approaches can be broadly lumped together as
follows:

1. Entailment-based scoring: Given a logical language L, background knowledge
B ⊂ L, examples D (usually a set of L-atoms), find a hypothesis H ∈ H,H ⊂ L
such that B∪H entail the instances in D. Here, the set H places restrictions of the
syntax of H so as to control model complexity and generalization. (For example,
H = D is a trivial hypothesis that satisfies the entailment stipulation.)

2. Likelihood-based scoring: Given L,B and D as defined above, find H ⊂ L such
that score(H,D)> score(H ′,D) for every H ′ 6= H. As discussed before, we might
define score(H,D)∝ logPr(D |H)−size(H). Here, like H above, size(H) attempts
to the control model complexity and generalization.

Generally speaking, the idea is to find hypotheses that do not assume more informa-
tion than provided, but nonetheless capture all of the examples. In that regard, entailment-
based approaches attempt to find the least general clause, in the sense that the hypothesis
is a clause that entails all and only the examples. Likelihood-based scoring attempt to
find a suitable representation that captures the distribution of the data, in the sense that
sampling from the representation will recover the data.

In the most standard setting, Bayesian network learning algorithms would be of the
first type, and inductive logic programming of the second type. But in many recent works,
the distinction is not strict. For example, we may use entailment-based inductive synthe-
sis for an initial estimate of the hypothesis, and then resort to Bayesian scoring models to
refine that hypothesis [70]. The synthesis step might invoke neural machinery [14]. We
might not require that the hypothesis entails every example in D but only the largest con-
sistent subset, which is sensible when we expect the examples to be noisy [113], or if the
search for such a comprehensive hypothesis is infeasible or computationally expensive.
We might compile B to circuit, and perform Bayesian scoring on that structure [114], and
so B could be seen as deterministic domain-specific constraints. Finally, we might stip-
ulate the conditions under which a “correct” hypothesis may be inferred wrt unknown
ground truth, only a subset of which is provided in D. This is perhaps best represented by
the (probably approximately correct) PAC-semantics that captures the quality possessed
by the output of learning algorithm whilst costing for the number of (noisy) examples
that need to be observed [115, 116, 117].

Broadly speaking, then, there are three major flavors of learning: statistical rela-
tional learning, inductive logic programming, and learning under PAC-semantics. Not
surprisingly, there are significant differences in terms of the learning regime, the notion
of correctness, and the underlying algorithmic machinery, although as suggested above,

there continues to be a cross-pollination of ideas. For example, fragments of inductive
logic programming can be shown to be PAC-learnable [118], in the sense of postulating
the conditions under which the learning is tractable. However, as mentioned, inductive
logic programming treats the input examples as defining a domain for which we aim to
construct a hypothesis. In PAC-Semantics, on the one hand, we only seek to bound the
probability that queries are true. But on the other, the framework allows for some un-
known distribution over models of the underlying theory, from which we can sample. We
never assume access to complete knowledge of this theory, or even the distribution. This
makes the setting significantly different from inductive logic programming.

It is worth noting that many of these ideas carry over to the learning of symbolic
(but not explicitly logical) artifacts, such as programs [45, 110, 119].

1.4.2. Learning in Infinite Spaces

Recall the interplay between SAT and probabilistic inference, on the one hand, and prob-
abilistic inference and learning, on the other. By means of logical and probabilistic rea-
soning tools for arithmetic fragments such as SMT and WMI, it should be clear that
it now becomes possible to extend learning schemes to continuous and mixed discrete-
continuous spaces. All three flavours of learning have, in fact, been adapted to the con-
tinuous setting in the recent years.

For example, one could learn SMT formulas by guessing a sentence that entails all
and only the examples [120]. For an account that also tries to evaluate a SMT formula
hypothesis that is correct wrt unknown ground truth via the PAC-semantics, see [121]. In
[122], it is further shown how the PAC-semantics approach could be compared against
other induction schemes for such arithmetic fragments.

If the overall objective is to obtain a distribution of the data, other possibilities
present themselves. For example, extending the work on learning SMT formulas, the
learning of weighted SMT formulas is also considered in [120]. That is, just as learn-
ing probabilistic propositional and relational sentences corresponds to representations
for which we can compute WMC, the learning of weighted SMT sentences essentially
corresponds to learning WMI formulations.

Such ideas could be integrated with circuits, where as discussed, probability esti-
mation was positioned to be computable in time polynomial in the size of the structure
[74, 86]. In [123, 124], by means of likelihood-based scoring, probabilistic circuits are
constructed, where the internal nodes of the structure would represent arithmetic formu-
las, that might be additionally decorated with probability mass or density functions.

WMI, and closely-related notions, can also be considered with rule learning. In
[125], real-valued data points are first lumped together to obtain atomic continuous ran-
dom variables. From these, relational formulas are constructed so as to yield hybrid prob-
abilistic programs. The rule learning is based on likelihood scoring. In [126], the real-
valued data points are first intervalized, and polynomials are learned for those intervals
based on likelihood scoring. These weighted atoms are then used for learning clauses by
entailment judgements, which is an extension to the discrete setting [113].

What about countably infinite domains? There is a long history in philosophical
logic on learning universals [31, 33], as indicated in our discussion on Aristotle. Early in
the history of inductive synthesis, numerous proposals were considered in terms of learn-
ing in the limit [127, 36, 128]. In most pragmatic instances on learning logical artifacts,

however, the difference between the uncountable and countably infinite setting is this: in
the former, we see finitely many real-valued samples as being drawn from an (unknown)
interval, and we could inspect these samples to crudely infer a lower and upper bound. In
the latter, based on finitely many relational atoms, we would need to infer a universally
quantified clause, such as ∀x,y,z(parent(x,y)∧ parent(y,z) ⊃ grandparent(x,z)). If we
are after a hypothesis that is simply guaranteed to be consistent wrt the observed exam-
ples, then standard rule induction strategies might suffice [112], and we could naively
interpret the rules as quantifying over a countably infinite domain. But this is somewhat
unsatisfactory, as there is no distinction between the rules learned in the standard finite
setting and its supposed applicability to the infinite setting. What is really needed is an
analysis of what rule learning would mean wrt the infinitely many examples that have
not been observed. This was recently considered via the PAC-semantics in [129], by
appealing to ideas on reasoning with open universes discussed earlier [106].

1.4.3. Gradient-based Structure Learning

Because data can be noisy, and there is a need to build representations at scale, neural
approaches to rule induction are on the rise. In [14, 130], for example, inductive logic
programming is reconsidered in a neural setting, by extracting the program from a la-
tent representation. In [131], a latent representation of a probabilistic relational model is
considered. In [67], a fuzzy logical semantics is shown to capture the representation and
reasoning of neural network outputs.

Before concluding this section, it is worth noting that although the above discussion
is primarily related to the learning of logical artifacts, it can equivalently be seen as a
class of machine learning methods that leverage symbolic domain knowledge. Indeed,
logic-based probabilistic inference over deterministic constraints, and entailment-based
induction augmented with background knowledge are instances of such a class [132, 6].
Analogously, the automated construction of relational and statistical knowledge bases
[133, 134] by combining background knowledge with extracted tuples (obtained, for
example, by applying natural language processing techniques to large textual data) is
another instance of such a class [135, 136]. In the next section, we will consider yet
another way in which logical and symbolic artifacts can influence learning: we will see
how such logical artifacts are useful to enable tractability, correctness, modularity and
compositionality.

1.5. Logic for Machine Learning

There are two obvious ways in which a logical framework can provide insights on ma-
chine learning theory. First, consider that computational tractability is of central con-
cern when applying logic in computer science, knowledge representation, database the-
ory and search [137, 138, 139]. Thus, the natural question to wonder is whether these
ideas would carry over to probabilistic machine learning. On the one hand, probabilistic
extensions to tractable knowledge representation frameworks could be considered [140].
But on the other, as discussed previously, ideas from knowledge compilation, and the use
of circuits, in particular, are proving very effective for designing tractable paradigms for
machine learning. While there has always been an interest in capturing tractable distri-

butions by means of low tree-width models [141], knowledge compilation has provided
a way to also represent high tree-width models and enable exact inference for a range of
queries [79, 142, 86, 114]. See [143] for a comprehensive view on the use of knowledge
compilation for machine learning.

The other obvious way logic can provide insights on machine learning theory is by
offering a formal apparatus to reason about context. Machine learning problems are often
positioned as atomic tasks, such as a classification task where regions of images need to
be labeled as cats or dogs. However, even in that limited setting, we imagine the resulting
classification system as being deployed as part of a larger system, which includes various
modules that communicate or interface with the classification system. We imagine an
implicit accountability to the labelling task in that the detected object is either a cat or
a dog, but not both. If there is information available that all the entities surrounding the
object of interest have been labelled as lions, we might want to (heuristically) accord a
high probability to the object being a cat, possibly a wild cat. There is a very low chance
of the object being a dog, then. If this is part of a vision system on a robot, we should
ensure that the robot never tramples on the object, regardless of whether it is a type of cat
or a dog. To inspect such patterns, and provide meta-theory for machine learning, it can
be shown that symbolic, programmatic and logical artifacts are extremely useful. We will
specifically consider correctness, modularity and compositionality to explore the claim.

We remark that there is not much to be said about the distinction between finite
versus infinite wrt most of these properties. In principle, many of these ideas are likely
amenable to extensions to an infinite setting in the ways discussed in the previous sec-
tions (e.g., considering constraints of a continuous or a countably infinite nature). So we
will not dwell on the size of the domain in quite an explicit manner as before.

1.5.1. Correctness

On the topic of correctness, the classical framework in computer science is verification:
can we provide a formal specification of what is desired, and can the system be checked
against that specification? In machine learning, we might ask whether the system, during
or after training, satisfies a specification. The specification here might mean constraints
about the physical laws of the domain, or notions of perturbation in the input space while
ensuring that the labels do not change, or insisting that the prediction does not label an
object as being both a cat and a dog, or otherwise ensuring that outcomes are not subject
to, say, gender bias. Although there is a broad body of work on such issues, touching
more generally on trust [144], we discuss approaches closer to the thrust of this article.
For example, [145] show that a trained neural network can be verified by means of an
SMT encoding of the network. In recent work, [146] show that the loss function of deep
learning systems can be adjusted to logical constraints by insisting that the distribution on
the predictions is proportional to the weighted model count of those constraints. In [114],
prior (logical) constraints are compiled to a circuit to be used for probability estimation.
In [147], circuits are shown to be amenable to training against probabilistic and causal
prior constraints, including assertions about fairness, for example. In [148], fairness is
formalized in a probabilistic relational language to enable equitable properties in, say,
social networks by explicitly relating the (human) entities of the domain.

1.5.2. Modularity

In [149, 15], a somewhat different approach to respecting domain constraints is taken: the
low-level prediction is obtained as usual from a machine learning module, which is then
interfaced with a probabilistic relational language and its reasoning apparatus. That is,
the reasoning is positioned to be tackled directly by the symbolic engine. In a sense, such
approaches cut across the three strands: the symbolic engine uses weighted model count-
ing, the formulas in the language could be obtained by (say) entailment-based scoring,
and the resulting language supports modularity and compositionality (discussed below).

On the topic of modularity, recall that the general idea is to reduce, simplify or
otherwise abstract a (probabilistic) computation as an atomic entity, which is then to be
referenced in another, possibly more complex, entity. (In this regard, modularity also aids
in assessing the correctness of systems since one can inspect the modules independently
too, in addition to the overall behavior.) In standard programming languages, this might
mean the compartmentalization and interrelation of computational entities. For machine
learning, approaches such as probabilistic programming [150, 151] support probabilistic
primitives in the language, with the intention of making learning modules re-usable and
modular. It can be shown, for example, that the computational semantics of some of
these languages reduce to WMC [152, 153]. Thus, in the infinite case, a corresponding
reduction to WMI follows [154, 126, 155].

A second dimension to modularity is the notion of abstraction. Here, we seek to
model, reason and explain the behavior of systems in a more tractable search space, by
omitting irrelevant details. The idea is widely used in natural and social sciences. Think
of understanding the political dynamics of elections by studying micro level phenom-
ena (say, voter grievances in counties) versus macro level events (e.g., television adver-
tisements, gerrymandering). In particular, in computer science, it is often understood as
the process of mapping one representation onto a simpler representation by suppressing
irrelevant information. In fact, integrating low-level behavior with high-level reasoning,
exploiting relational representations to reduce the number of inference computations,
and many other search space reduction techniques can all loosely be seen as instances of
abstraction [156].

While there has been significant work on abstraction in deterministic systems [157],
for machine learning, however, a probabilistic variant is clearly needed. In [158], an ac-
count of abstraction for loop-free propositional probabilistic programs is provided, where
certain parts of the program (possibly involving continuous properties) can be reduced to
a Bernoulli random variable. For example, suppose every occurrence of the continuous
random variable x, drawn uniformly on the interval [0,1], in a program is either of the
form x≤ 7 or of the form x > 7. Then, we could use a discrete random variable b with a
0.7 probability of being true to capture x≤ 7; and analogously, ¬b to capture x > 7. The
resulting program is likely to be simpler. In [156], an account of abstraction for prob-
abilistic relational models is considered, where the notion of abstraction also extends
to deterministic constraints and complex formulas. For example, a single probabilistic
variable in the abstracted model could denote a complex logical formula in the original
model. Moreover, the logical properties that enable verifying and inducing abstractions
are also considered, and it is shown how WMC is sufficient for the computability of these
properties (also see [153]).

Incidentally, abstraction brings to light a reduction from infinite to finite: it is shown
in [156] that the modeling of piecewise densities as weighted propositions, which is

leveraged in WMI [92, 154], is a simple case of the more general account. Therefore, it
is worthwhile to investigate whether this or other accounts of abstraction could emerge
as general-purpose tools that allow us to inspect the conditions under which infinitary
statements reduce to finite computations.

A broader point here is the role abstraction might play in generating explanations
[159, 160]. For example, a user’s understanding of the domain is likely to be different
from the low-level data that a machine learning system interfaces with [161], and so,
abstractions can establish a map these two levels in a formal way.

1.5.3. Compositionality

Finally, we turn to the topic of compositionality, which, of course, is closely related to
modularity in that we want to distinct modules to come together to form a complex com-
position. Not surprisingly, this is of great concern in AI, as it is widely acknowledged that
most AI systems will involve heterogeneous components, some of which may involve
learning from data, and others reasoning, search and symbol manipulation [9]. In contin-
uation with the above discussion, probabilistic programming is one such endeavor that
purports to tackle this challenge by allowing modular components to be composed over
programming and/or logical connectives [150, 151, 70, 15, 149, 162, 163, 164, 165, 61].
(See [139, 166, 167] for ideas in deterministic systems.) However, probabilistic program-
ming only composes probabilistic computations, but does not offer an obvious means to
capture other types of search-based computations, such as SAT, and integer and convex
programming.

Recall that the computational semantics of probabilistic programs reduces to WMC
[152, 153]. Following works such as [168, 169], an interesting observation made in [170]
is that by appealing to a sum of products computation over different semiring structures,
we can realize a large number of tasks such as satisfiability, unweighted model counting,
sensitivity analysis, gradient computations, in addition to WMC. It was then shown in
[171] that the idea could be generalized further for infinite domains: by defining a mea-
sure on first-order models, WMI and convex optimization can also be captured. As the
underlying language is a logical one, composition can already be defined using logical
connectives. But an additional, more involved, notion of composition is also proposed,
where a sum of products over different semirings can be concatenated. To reiterate, the
general idea behind these proposals [169, 170, 171] is to arrive at a principled paradigm
that allows us to interface learned modules with other types of search and optimization
computations for the compositional building of AI systems. See also [172] for analogous
discussions, but where a different type of coupling for the underlying computations is
suggested. Overall, we observed that a formal apparatus (symbolic, programmatic and
logical artifacts) help us define such compositional constructions by providing a meta-
theory.

1.5.4. Empowering Neural Artifacts

As argued above, concerns of correctness, modularity and compositionality apply to
almost all of machine learning. Given the vast number of parameter and architectural
choices in deep learning, such concerns are particularly prominent. We have reviewed
corresponding advances in the above sections, but we reiterate the key ideas for the sake
of completeness.

On the topic of correctness, ensuring that the training of neural networks respect
safety and physical constraints has received considerable attention [145, 146], ranging
from the use of SMT encodings to verify the sensitivity of trained models to the use of
WMC for capturing domain knowledge whilst training models.

On the topic of modularity and compositionality, a general observation is that it is
clearly advantageous to combine probabilistic computations from various modules, neu-
ral or otherwise. We previously argued for the use of probabilistic programming and re-
lated proposals to systematically capture such interactions. Consequently, probabilistic
programming languages that allow neural components are in active development [173].
In [169, 174], for example, neural computations are positioned as one of the many pos-
sible types of computations in a semiring framework. This is very much in the spirit of
semiring-based generalizations to WMC discussed earlier [170, 171]. Likewise, abstrac-
tion can be seen as a simple schema for unifying deep learning and traditional symbolic
reasoning. For example, much of the work on neuro-symbolic systems attempt to in-
tegrate neural network outputs as abstract (and external) predicates in a logical frame-
work [5, 67, 6, 8, 175].

Naturally, much work remains to be done on how the integration between neural and
logical computations can be made deeper, in the sense of making the best possible trade-
offs between learning and reasoning. But, from our discussions, it is clear that logical
methods provide a powerful and rigorous regime to establish those tradeoffs and develop
meta-theory for constructing hybrid models.

1.6. Conclusions

In this article, we surveyed work that provides further evidence for the connections be-
tween logic and learning. Our narrative was structured in terms of three strands: logic
versus learning, machine learning for logic, and logic for machine learning, but naturally,
there was considerable overlap.

We covered a large body of work on what these connections look like, including,
for example, pragmatic concerns such as the use of hard, domain-specific constraints and
background knowledge, all of which considerably eases the requirement that all of the
agent’s knowledge should be derived from observations alone. (See discussions in [176,
11] on the limitations of learned behavior, for example.) Where applicable, we placed an
emphasis on how extensions to infinite domains are possible. Moreover, logical artifacts
can help in constraining, simplifying and/or composing machine learning entities, and in
providing a principled way to study the underlying representational and computational
issues.

In general, this type of work could help us move beyond the narrow focus of the
current learning literature so as to deal with time, space, abstraction, causality, quan-
tified generalizations, relational abstractions, unknown domains, unforeseen examples,
among other things, in a principled fashion. In fact, what is being advocated is the tack-
ling of problems that symbolic logic and machine learning might struggle to address in-
dividually. One could even think of the need for a recursive combination of the strands:
purely reactive components interact with purely cogitative elements, but then those re-
active components are learned against domain constraints, and the cogitative elements
are induced from data, and so on. More broadly, making progress towards a formal real-

ization of System 1 versus System 2 processing might also contribute to our understand-
ing of human intelligence, and if not that, at least capture the human-like capability of
balancing reaction versus deliberation in automated systems.

Acknowledgements. This chapter is a significantly extended version of a previous
article by the author [177]. The author was supported by a Royal Society University
Research Fellowship. The author is grateful to Paulius Dilkas, Kwabena Nuamah, Alan
Bundy, and Luc De Raedt for comments.

References

[1] Raedt LD, Kersting K, Natarajan S, et al. Statistical relational artificial intelligence: Logic, probability,
and computation. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2016;10(2):1–
189.

[2] Getoor L, Taskar B, editors. An introduction to statistical relational learning. MIT Press; 2007.
[3] Lakemeyer G, Levesque HJ. Cognitive robotics. In: Handbook of knowledge representation. Elsevier;

2007. p. 869–886.
[4] Kaelbling LP, Lozano-Pérez T. Integrated task and motion planning in belief space. I J Robotic Res.

2013;32(9-10):1194–1227.
[5] Garcez Ad, Gori M, Lamb LC, et al. Neural-symbolic computing: An effective methodology for prin-

cipled integration of machine learning and reasoning. arXiv preprint arXiv:190506088. 2019;.
[6] De Raedt L, Manhaeve R, Dumancic S, et al. Neuro-symbolic= neural+ logical+ probabilistic. In:

NeSy’19@ IJCAI, the 14th International Workshop on Neural-Symbolic Learning and Reasoning;
2019. p. 1–4.

[7] Lamb L, Garcez A, Gori M, et al. Graph neural networks meet neural-symbolic computing: A survey
and perspective. arXiv preprint arXiv:200300330. 2020;.

[8] Sarker MK, Zhou L, Eberhart A, et al. Neuro-symbolic artificial intelligence current trends. arXiv
preprint arXiv:210505330. 2021;.

[9] Marcus G, Davis E. Rebooting ai: Building artificial intelligence we can trust. Pantheon; 2019.
[10] Zellers R, Bisk Y, Schwartz R, et al. Swag: A large-scale adversarial dataset for grounded commonsense

inference. arXiv preprint arXiv:180805326. 2018;.
[11] Kambhampati S. Polanyi’s revenge and ai’s new romance with tacit knowledge. Communications of

the ACM. 2021;64(2):31–32.
[12] Bunel R, Hausknecht M, Devlin J, et al. Leveraging grammar and reinforcement learning for neural

program synthesis. arXiv preprint arXiv:180504276. 2018;.
[13] Xu K, Li J, Zhang M, et al. What can neural networks reason about? arXiv preprint arXiv:190513211.

2019;.
[14] Evans R, Grefenstette E. Learning explanatory rules from noisy data. Journal of Artificial Intelligence

Research. 2018;61:1–64.
[15] Manhaeve R, Dumancic S, Kimmig A, et al. Deepproblog: Neural probabilistic logic programming. In:

Advances in Neural Information Processing Systems; 2018. p. 3749–3759.
[16] Kahneman D. Thinking, fast and slow. Macmillan; 2011.
[17] Feeney A, Heit E. Inductive reasoning: Experimental, developmental, and computational approaches.

Cambridge University Press; 2007.
[18] Russell B. History of western philosophy: Collectors edition. Routledge; 2013.
[19] Beaney M. The oxford handbook of the history of analytic philosophy. Oxford University Press; 2013.
[20] Levesque HJ. Thinking as computation: A first course. MIT Press; 2012.
[21] Hanna R. Rationality and logic. MIT Press; 2009.
[22] van Benthem J, Ter Meulen A. Handbook of logic and language. Elsevier; 1996.
[23] Gabbay DM, Woods JH. Handbook of the history of logic. Vol. 2009. Elsevier North-Holland; 2004.
[24] Smullyan R. First-order logic. Dover Publications; 1995.
[25] Hughes GE, Cresswell MJ. A companion to modal logic. Routledge; 1984.

[26] Kowalski RA. Predicate logic as programming language. In: IFIP Congress; 1974. p. 569–574.
[27] Biere A, Heule M, van Maaren H. Handbook of satisfiability. Vol. 185. IOS press; 2009.
[28] Muggleton S. Inductive logic programming. New generation computing. 1991;8(4):295–318.
[29] Lange M. Hume and the problem of induction. In: Handbook of the history of logic. Vol. 10. Elsevier;

2011. p. 43–91.
[30] Carnap R, Jeffrey RC. Studies in inductive logic and probability. Vol. 2. Univ of California Press; 1980.
[31] Hintikka J. Carnap and essler versus inductive generalization. Erkenntnis. 1975;9(2):235–244.
[32] Carnap R. Logical foundations of probability. Routledge and Kegan Paul London; 1951.
[33] Zabell SL. Carnap and the logic of inductive inference. In: Handbook of the history of logic. Vol. 10.

Elsevier; 2011. p. 265–309.
[34] Plotkin GD. A note on inductive generalization. Machine intelligence. 1970;5(1):153–163.
[35] Michalski RS. A theory and methodology of inductive learning. In: Machine learning. Elsevier; 1983.

p. 83–134.
[36] Shapiro EY. Inductive inference of theories from facts. Yale University, Department of Computer Sci-

ence; 1981.
[37] De Raedt L, Frasconi P, Kersting K, et al., editors. Probabilistic inductive logic programming: theory

and applications. Berlin, Heidelberg: Springer-Verlag; 2008.
[38] Quinlan JR. Learning first-order definitions of functions. Journal of artificial intelligence research.

1996;5:139–161.
[39] Peirce CS. Collected papers of charles sanders peirce. Vol. 7. Harvard University Press; 1974.
[40] Carson D. The abduction of sherlock holmes. International Journal of Police Science & Manage-

ment. 2009;11(2):193–202.
[41] Tsamoura E, Michael L. Neural-symbolic integration: A compositional perspective. arXiv preprint

arXiv:201011926. 2020;.
[42] Dai WZ, Muggleton SH. Abductive knowledge induction from raw data. arXiv preprint

arXiv:201003514. 2020;.
[43] Poole D. Abducing through negation as failure: Stable models within the independent choice logic.

The Journal of Logic Programming. 2000;44(1-3):5–35.
[44] Poole D. Probabilistic horn abduction and bayesian networks. Artificial Intelligence. 1993;64(1):81–

129.
[45] Gulwani S. Dimensions in program synthesis. In: Proceedings of the 12th international ACM SIG-

PLAN symposium on Principles and practice of declarative programming; 2010. p. 13–24.
[46] Genesereth MR, Nilsson NJ. Logical foundations of artificial intelligence. Morgan Kaufmann; 2012.
[47] Bradley AR, Manna Z. The calculus of computation: decision procedures with applications to verifica-

tion. Springer Science & Business Media; 2007.
[48] Kersting K, Natarajan S, Poole D. Statistical relational AI: Logic, probability and computation. 2011;.
[49] Cropper A, Dumancic S. Inductive logic programming at 30: a new introduction. Journal of Artificial

Intelligence Research. 1993;1:1–15.
[50] Benedikt M, Kersting K, Kolaitis PG, et al. Logic and learning (dagstuhl seminar 19361). Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik; 2020.
[51] Brewka G, Delgrande JP, Romero J, et al. asprin: Customizing answer set preferences without a

headache. In: AAAI; 2015. p. 1467–1474.
[52] Levesque H, Reiter R, Lespérance Y, et al. Golog: A logic programming language for dynamic do-

mains. Journal of Logic Programming. 1997;31:59–84.
[53] McCarthy J. Programs with common sense. In: Semantic Information Processing. MIT Press; 1968. p.

403–418.
[54] Nilsson NJ. Probabilistic logic. Artificial intelligence. 1986;28(1):71–87.
[55] Halpern J. An analysis of first-order logics of probability. Artificial Intelligence. 1990;46(3):311–350.
[56] Bacchus F. Representing and reasoning with probabilistic knowledge. MIT Press; 1990.
[57] Raedt LD, Kimmig A, Toivonen H. Problog: A probabilistic prolog and its application in link discovery.

In: Proc. IJCAI; 2007. p. 2462–2467.
[58] McCarthy J, Hayes PJ. Some philosophical problems from the standpoint of artificial intelligence. In:

Machine Intelligence; 1969. p. 463–502.
[59] Kooi B. Probabilistic dynamic epistemic logic. Journal of Logic, Language and Information. 2003;

12(4):381–408.
[60] Fagin R, Halpern JY. Reasoning about knowledge and probability. J ACM. 1994;41(2):340–367.

[61] Belle V. Logic meets probability: Towards explainable AI systems for uncertain worlds. In: IJCAI;
2017.

[62] Fagin R. Probabilities on finite models. The Journal of Symbolic Logic. 1976;41(1):50–58.
[63] Mitchell DG, Selman B, Levesque HJ. Hard and easy distributions of sat problems. In: Proc. AAAI;

1992. p. 459–465.
[64] Shafer G. Perspectives on the theory and practice of belief functions. International Journal of Approx-

imate Reasoning. 1990;4(5–6):323 – 362.
[65] Giles R. Łukasiewicz logic and fuzzy set theory. International Journal of Man-Machine Studies. 1976;

8(3):313–327.
[66] Bach SH, Broecheler M, Huang B, et al. Hinge-loss markov random fields and probabilistic soft logic.

arXiv preprint arXiv:150504406. 2015;.
[67] Serafini L, Garcez Ad. Logic tensor networks: Deep learning and logical reasoning from data and

knowledge. arXiv preprint arXiv:160604422. 2016;.
[68] Koller D, Friedman N. Probabilistic graphical models - principles and techniques. MIT Press; 2009.
[69] Niu F, Ré C, Doan A, et al. Tuffy: Scaling up statistical inference in markov logic networks using an

rdbms. Proceedings of the VLDB Endowment. 2011;4(6):373–384.
[70] Richardson M, Domingos P. Markov logic networks. Machine learning. 2006;62(1):107–136.
[71] Poole D. First-order probabilistic inference. In: Proc. IJCAI; 2003. p. 985–991.
[72] Suciu D, Olteanu D, Ré C, et al. Probabilistic databases. Synthesis Lectures on Data Management.

2011;3(2):1–180.
[73] Gomes CP, Sabharwal A, Selman B. Model counting. In: Handbook of satisfiability. IOS Press; 2009.
[74] Chavira M, Darwiche A. On probabilistic inference by weighted model counting. Artificial Intelli-

gence. 2008;172(6-7):772–799.
[75] Renkens J, Shterionov D, Van den Broeck G, et al. ProbLog2: From probabilistic programming to

statistical relational learning. In: Roy D, Mansinghka V, Goodman N, editors. Proceedings of the NIPS
Probabilistic Programming Workshop,; Dec.; 2012.

[76] Dilkas P, Belle V. Weighted model counting without parameter variables. In: SAT; 2021.
[77] Dilkas P, Belle V. Weighted model counting with conditional weights for Bayesian networks. In: UAI;

2021.
[78] Dilkas P, Belle V. Generating random logic programs using constraint programming. In: CP; 2020.
[79] Chavira M, Darwiche A. Compiling Bayesian networks with local structure. In: IJCAI; Vol. 19; 2005.

p. 1306.
[80] Muise C, McIlraith S, Beck J, et al. D sharp: Fast d-DNNF compilation with sharpSAT. Advances in

Artificial Intelligence. 2012;:356–361.
[81] Sang T, Beame P, Kautz HA. Performing bayesian inference by weighted model counting. In: AAAI;

2005. p. 475–482.
[82] Dudek JM, Phan VH, Vardi MY. Dpmc: Weighted model counting by dynamic programming on

project-join trees. In: International Conference on Principles and Practice of Constraint Programming;
Springer; 2020. p. 211–230.

[83] Wei W, Selman B. A new approach to model counting. In: Theory and Applications of Satisfiability
Testing; Springer; 2005. p. 96–97.

[84] Chakraborty S, Fremont DJ, Meel KS, et al. Distribution-aware sampling and weighted model counting
for SAT. In: AAAI; 2014. p. 1722–1730.

[85] Darwiche A, Marquis P. A knowledge compilation map. J Artif Intell Res. 2002;17:229–264.
[86] Poon H, Domingos P. Sum-product networks: A new deep architecture. UAI. 2011;:337–346.
[87] Van den Broeck G. Lifted Inference and Learning in Statistical Relational Models [dissertation]. KU

Leuven; 2013.
[88] Haaren JV, den Broeck GV, Meert W, et al. Lifted generative learning of markov logic networks. Ma-

chine Learning. 2016;103(1):27–55.
[89] Barrett C, Sebastiani R, Seshia SA, et al. Satisfiability modulo theories. In: Handbook of satisfiability.

Chapter 26. IOS Press; 2009. p. 825–885.
[90] Shenoy P, West J. Inference in hybrid Bayesian networks using mixtures of polynomials. International

Journal of Approximate Reasoning. 2011;52(5):641–657.
[91] Sanner S, Abbasnejad E. Symbolic variable elimination for discrete and continuous graphical models.

In: AAAI; 2012.
[92] Belle V, Passerini A, Van den Broeck G. Probabilistic inference in hybrid domains by weighted model

integration. In: IJCAI; 2015. p. 2770–2776.
[93] Chistikov D, Dimitrova R, Majumdar R. Approximate counting in SMT and value estimation for prob-

abilistic programs. In: Tacas. Vol. 9035; 2015. p. 320–334.
[94] Morettin P, Passerini A, Sebastiani R. Advanced smt techniques for weighted model integration. Arti-

ficial Intelligence. 2019;275:1–27.
[95] Merrell D, Albarghouthi A, D’Antoni L. Weighted model integration with orthogonal transformations.

In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence; 2017.
[96] Zeng Z, Van den Broeck G. Efficient search-based weighted model integration. arXiv preprint

arXiv:190305334. 2019;.
[97] Kolb S, Mladenov M, Sanner S, et al. Efficient symbolic integration for probabilistic inference. In:

IJCAI; 2018.
[98] Kolb S, Morettin P, Zuidberg Dos Martires P, et al. The pywmi framework and toolbox for probabilistic

inference using weighted model integration. IJCAI. 2019;.
[99] Zuidberg Dos Martires P, Dries A, De Raedt L. Knowledge compilation with continuous random vari-

ables and its application in hybrid probabilistic logic programming. arXiv preprint arXiv:180700614.
2018;.

[100] Feldstein J, Belle V. Lifted reasoning meets weighted model integration. In: UAI; 2021.
[101] Russell SJ. Unifying logic and probability. Commun ACM. 2015;58(7):88–97.
[102] Gutmann B, Thon I, Kimmig A, et al. The magic of logical inference in probabilistic programming.

Theory and Practice of Logic Programming. 2011;11(4-5):663–680.
[103] Milch B, Marthi B, Sontag D, et al. Approximate inference for infinite contingent bayesian networks.

In: AISTATS; 2005. p. 238–245.
[104] Singla P, Domingos PM. Markov logic in infinite domains. In: UAI; 2007. p. 368–375.
[105] Grohe M, Lindner P. Probabilistic databases with an infinite open-world assumption. In: Proceedings

of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems; 2019. p.
17–31.

[106] Belle V. Open-universe weighted model counting. In: AAAI; 2017. p. 3701–3708.
[107] Belle V. Weighted model counting with function symbols. In: UAI; 2017.
[108] Loos S, Irving G, Szegedy C, et al. Deep network guided proof search. arXiv preprint arXiv:170106972.

2017;.
[109] Prates M, Avelar PH, Lemos H, et al. Learning to solve np-complete problems: A graph neural network

for decision tsp. In: Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 33; 2019. p.
4731–4738.

[110] Nye M, Hewitt L, Tenenbaum J, et al. Learning to infer program sketches. In: International Conference
on Machine Learning; PMLR; 2019. p. 4861–4870.

[111] Abboud R, Ceylan I, Lukasiewicz T. Learning to reason: Leveraging neural networks for approximate
dnf counting. In: Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 34; 2020. p.
3097–3104.

[112] Muggleton S, De Raedt L. Inductive logic programming: Theory and methods. The Journal of Logic
Programming. 1994;19:629–679.

[113] De Raedt L, Dries A, Thon I, et al. Inducing probabilistic relational rules from probabilistic examples.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence; 2015.

[114] Liang Y, Bekker J, Van den Broeck G. Learning the structure of probabilistic sentential decision dia-
grams. In: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI); 2017.

[115] Valiant LG. Robust logics. Artificial Intelligence. 2000;117(2):231–253.
[116] Cohen WW. PAC-learning nondeterminate clauses. In: AAAI; 1994. p. 676–681.
[117] Grohe M, Ritzert M. Learning first-order definable concepts over structures of small degree. In: 2017

32nd annual ACM/IEEE symposium on logic in computer science (LICS); IEEE; 2017. p. 1–12.
[118] De Raedt L, Džeroski S. First-order jk-clausal theories are PAC-learnable. Artificial Intelligence. 1994;

70(1):375–392.
[119] Ellis K, Solar-Lezama A, Tenenbaum J. Sampling for bayesian program learning. In: NIPS; 2016. p.

1289–1297.
[120] Kolb S. Learn+ solve: Learning and solving constrained hybrid inference problems [dissertation]. KU

Leuven; 2019.
[121] Mocanu IG, Belle V, Juba B. Polynomial-time implicit learnability in smt. In: ECAI; 2020.
[122] Rader AP, Mocanu IG, Belle V, et al. Learning implicitly with noisy data in linear arithmetic. IJCAI.

2021;.
[123] Molina A, Vergari A, Di Mauro N, et al. Mixed sum-product networks: A deep architecture for hybrid

domains. In: Thirty-second AAAI conference on artificial intelligence; 2018.
[124] Bueff A, Speichert S, Belle V. Tractable querying and learning in hybrid domains via sum-product

networks. KR Workshop on Hybrid Reasoning. 2018;.
[125] Nitti D, Ravkic I, Davis J, et al. Learning the structure of dynamic hybrid relational models. In: Pro-

ceedings of the Twenty-second European Conference on Artificial Intelligence; IOS Press; 2016. p.
1283–1290.

[126] Speichert S, Belle V. Learning probabilistic logic programs in continuous domains. In: ILP; 2019.
[127] Shapiro EY. An algorithm that infers theories from facts. In: IJCAI; Citeseer; 1981. p. 446–451.
[128] Gold EM. Language identification in the limit. Information and control. 1967;10(5):447–474.
[129] Belle V, Juba B. Implicitly learning to reason in first-order logic. In: Advances in Neural Information

Processing Systems; 2019. p. 3376–3386.
[130] Campero A, Pareja A, Klinger T, et al. Logical rule induction and theory learning using neural theorem

proving. arXiv preprint arXiv:180902193. 2018;.
[131] Marra G, Kuželka O. Neural markov logic networks. arXiv preprint arXiv:190513462. 2019;.
[132] Domingos P. The master algorithm: How the quest for the ultimate learning machine will remake our

world. Basic Books; 2015.
[133] Niu F, Zhang C, Ré C, et al. Deepdive: Web-scale knowledge-base construction using statistical learn-

ing and inference. VLDS. 2012;12:25–28.
[134] Carlson A, Betteridge J, Kisiel B, et al. Toward an architecture for never-ending language learning. In:

AAAI; 2010. p. 1306–1313.
[135] Cohen W, Yang F, Mazaitis KR. Tensorlog: A probabilistic database implemented using deep-learning

infrastructure. Journal of Artificial Intelligence Research. 2020;67:285–325.
[136] Minervini P, Bošnjak M, Rocktäschel T, et al. Differentiable reasoning on large knowledge bases and

natural language. In: Proceedings of the AAAI Conference on Artificial Intelligence; Vol. 34; 2020. p.
5182–5190.

[137] Liu Y, Levesque H. Tractable reasoning with incomplete first-order knowledge in dynamic systems
with context-dependent actions. In: Proc. IJCAI; 2005. p. 522–527.

[138] Levesque HJ, Brachman RJ. Expressiveness and tractability in knowledge representation and reason-
ing. Computational Intelligence. 1987;3:78–93.

[139] Mitchell DG, Ternovska E. A framework for representing and solving NP search problems. In: AAAI;
2005. p. 430–435.

[140] Koller D, Levy A, Pfeffer A. P-classic: a tractable probablistic description logic. In: Proc. AAAI /
IAAI; 1997. p. 390–397.

[141] Bach FR, Jordan MI. Thin junction trees. In: Advances in Neural Information Processing Systems;
2002. p. 569–576.

[142] Darwiche A. A differential approach to inference in Bayesian networks. Journal of the ACM (JACM).
2003;50(3):280–305.

[143] Darwiche A. Three modern roles for logic in ai. In: Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems; 2020. p. 229–243.

[144] Rudin C, Ustun B. Optimized scoring systems: Toward trust in machine learning for healthcare and
criminal justice. Interfaces. 2018;48(5):449–466.

[145] Huang X, Kwiatkowska M, Wang S, et al. Safety verification of deep neural networks. In: International
Conference on Computer Aided Verification; Springer; 2017. p. 3–29.

[146] Xu J, Zhang Z, Friedman T, et al. A semantic loss function for deep learning with symbolic knowledge.
In: International Conference on Machine Learning; 2018. p. 5502–5511.

[147] Papantonis I, Belle V. Closed-form results for prior constraints in sum-product networks. Frontiers in
Artificial Intelligence. 2021;.

[148] Farnadi G, Babaki B, Getoor L. Fairness in relational domains. In: Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society; 2018. p. 108–114.

[149] Dries A, Kimmig A, Davis J, et al. Solving probability problems in natural language. In: IJCAI; 2017.
[150] Goodman ND, Mansinghka VK, Roy DM, et al. Church: A language for generative models. In: Pro-

ceedings of UAI; 2008. p. 220–229.
[151] De Raedt L, Kimmig A. Probabilistic (logic) programming concepts. Machine Learning. 2015;

100(1):5–47.

[152] Fierens D, Van den Broeck G, Thon I, et al. Inference in probabilistic logic programs using weighted
CNF’s. In: UAI; 2011. p. 211–220.

[153] Holtzen S, Van den Broeck G, Millstein T. Dice: Compiling discrete probabilistic programs for scalable
inference. arXiv preprint arXiv:200509089. 2020;.

[154] Dos Martires PZ, Dries A, De Raedt L. Exact and approximate weighted model integration with prob-
ability density functions using knowledge compilation. In: Proceedings of the AAAI Conference on
Artificial Intelligence; Vol. 33; 2019. p. 7825–7833.

[155] Albarghouthi A, D’Antoni L, Drews S, et al. Quantifying program bias. CoRR. 2017;abs/1702.05437.
[156] Belle V. Abstracting probabilistic models: Relations, constraints and beyond. Knowledge-Based Sys-

tems. 2020;:105976.
[157] Banihashemi B, De Giacomo G, Lespérance Y. Abstraction in situation calculus action theories. In:

AAAI; 2017. p. 1048–1055.
[158] Holtzen S, Millstein T, Van den Broeck G. Probabilistic program abstractions. In: UAI; 2017.
[159] Gunning D. Explainable artificial intelligence (xai). DARPA/I20; 2016.
[160] Belle V, Papantonis I. Principles and practice of explainable machine learning. Frontiers in Big Data.

2021;.
[161] Sreedharan S, Srivastava S, Kambhampati S. Hierarchical expertise level modeling for user specific

contrastive explanations. In: IJCAI; 2018. p. 4829–4836.
[162] Nitti D, Belle V, De Laet T, et al. Planning in hybrid relational mdps. Machine Learning. 2017;

106(12):1905–1932.
[163] Bundy A, Nuamah K, Lucas C. Automated reasoning in the age of the internet. In: International Con-

ference on Artificial Intelligence and Symbolic Computation; Springer; 2018. p. 3–18.
[164] Belle V, Levesque HJ. Allegro: Belief-based programming in stochastic dynamical domains. In: IJCAI;

2015.
[165] Halpern JY. Reasoning about uncertainty. MIT Press; 2003.
[166] Ensan A, Ternovska E. Modular systems with preferences. In: IJCAI; 2015. p. 2940–2947.
[167] Lierler Y, Truszczynski M. An abstract view on modularity in knowledge representation. In: AAAI;

2015. p. 1532–1538.
[168] Bistarelli S, Montanari U, Rossi F. Semiring-based constraint logic programming: syntax and seman-

tics. TOPLAS. 2001;23(1):1–29.
[169] Eisner J, Filardo NW. Dyna: Extending Datalog for modern AI. In: Datalog reloaded. (LNCS; Vol.

6702). Springer; 2011. p. 181–220.
[170] Kimmig A, Van den Broeck G, De Raedt L. Algebraic model counting. J Appl Log. 2017;22:46–62.
[171] Belle V, De Raedt L. Semiring programming: A declarative framework for generalized sum product

problems. AAAI Workshop: Statistical Relational Artificial Intelligence. 2020;.
[172] Kordjamshidi P, Roth D, Kersting K. Systems ai: A declarative learning based programming perspec-

tive. In: IJCAI; 2018. p. 5464–5471.
[173] Le TA, Baydin AG, Wood F. Inference compilation and universal probabilistic programming. In: Arti-

ficial Intelligence and Statistics; PMLR; 2017. p. 1338–1348.
[174] Obermeyer F, Bingham E, Jankowiak M, et al. Functional tensors for probabilistic programming. arXiv

preprint arXiv:191010775. 2019;.
[175] Riegel R, Gray A, Luus F, et al. Logical neural networks. arXiv preprint arXiv:200613155. 2020;.
[176] Levesque HJ. Common sense, the turing test, and the quest for real ai. MIT Press; 2017.
[177] Belle V. Symbolic logic meets machine learning: A brief survey in infinite domains. In: International

Conference on Scalable Uncertainty Management; Springer; 2020. p. 3–16.

	Logic meets Learning: From Aristotle to Neural Networks

